基于径向基函数无网格离散的快速多水平算法

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    11501313
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    18.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    A0501.算法基础理论与构造方法
  • 结题年份:
    2018
  • 批准年份:
    2015
  • 项目状态:
    已结题
  • 起止时间:
    2016-01-01 至2018-12-31

项目摘要

As one of the numerical methods for partial differential equations, the radial basis functions meshfree method not only avoids the mesh generation in computing domain, but also is more suitable for solving high-dimensional problems. However, the discrete algebraic system produced by it for partial differential equations is ill-conditioned. Although the discrete matrix produced by compactly supported radial basis functions is sparse, there still exists contradiction between the size of support and the accuracy of approximation, which is so called ‘trade-off’ dilemma. This problem has not been well resolved up to now. In order to maintain better approximation accuracy with sparse algebraic system, in this project we will use the fast multilevel algorithms on the scattered data set. We will construct the hierarchical radial basis functions by splitting the reproducing kernel Hilbert spaces, and get a nested family of function spaces. We will estimate the condition number of the discrete matrix produced by hierarchical radial basis functions, and analyze the approximation properties of the cascadic meshfree algorithm on nested function spaces. The advantage of the cascadic meshfree algorithm is that it can avoid the huge amount of work of mesh generation and the tedious work to construct interpolation operators. It will speed up the solution of discrete system produced by radial basis functions, thereby enhance the computational efficiency for solving partial differential equations by radial basis functions meshfree method.
作为数值求解偏微分方程的方法之一,径向基函数无网格方法不仅避免了在计算区域生成网格,而且更加适合求解高维问题。但是采用该方法离散偏微分方程时,导出的离散代数系统有很坏的条件数。尽管紧支集径向基函数有稀疏的离散矩阵,但是存在支集大小与逼近精度之间的矛盾,即所谓的‘trade-off’难题。该问题一直没有得到很好解决。为了既能保持好的逼近精度同时又能拥有稀疏的代数系统,本研究将在散乱数据集上使用快速多水平算法。通过分裂再生核Hilbert空间,建立等级的径向基函数,得到一族嵌套的函数空间。我们将估计等级径向基函数离散矩阵的条件数,以及分析嵌套函数空间上的瀑布型无网格算法的逼近性质。瀑布型无网格算法的好处在于能够避免网格生成的巨大工作量和冗繁的插值算子的构造,加速径向基函数无网格离散系统的代数求解,从而提升用径向基函数无网格方法数值求解偏微分方程的计算效率。

结项摘要

径向基函数已经成为偏微分方程数值求解中的重要工具之一,具有高精度及使用的灵活性。本项目对径向基函数无网格离散方法以及基于该离散方法的快速多水平算法进行研究。这项研究的意义在于,快速多水平算法可以解决无网格离散方法中逼近精度与数值稳定性之间的矛盾。该研究将加速径向基函数无网格离散系统的代数求解,从而提升用径向基函数数值求解偏微分方程的计算效率。该研究也将为后续研究无网格局部Petrov-Galerkin方法的收敛性以及发展稠密矩阵迭代技术等提供重要理论基础。主要研究内容包括:(1)研究径向基函数强检验无网格法的收敛性理论。对于一类适定的线性与非线性偏微分方程,研究散乱采样定理和径向基函数空间上的反估计;研究强检验配点法的强制性与有界性;研究径向基函数试探空间的逼近性质等等。(2)研究再生核Hilbert空间(即径向基函数的本性空间)的分裂。通过空间分裂得到了一族嵌套的等级径向基函数空间,将其作为试探空间用于求解偏微分方程,给出Sobolev范数下的误差估计。(3)研究径向基函数离散矩阵的预处理与迭代算法。给出预处理矩阵的特征值分布与条件数估计。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(1)
会议论文数量(0)
专利数量(0)
Solving the 2-D elliptic Monge-Ampere equation by a Kansa's method
用 Kansa 法求解二维椭圆 Monge-Ampere 方程
  • DOI:
    10.1007/s10255-017-0656-3
  • 发表时间:
    2017
  • 期刊:
    Acta Mathematicae Applicatae Sinica-English Series
  • 影响因子:
    0.8
  • 作者:
    Li Qin;Liu Zhiyong
  • 通讯作者:
    Liu Zhiyong
Local multilevel scattered data interpolation
局部多级分散数据插值
  • DOI:
    10.1016/j.enganabound.2017.11.017
  • 发表时间:
    2018-07
  • 期刊:
    Engineering Analysis with Boundary Elements
  • 影响因子:
    3.3
  • 作者:
    Zhiyong liu
  • 通讯作者:
    Zhiyong liu
Restricted Additive Schwarz Preconditioner for Elliptic Equations with Jump Coefficients
带跳跃系数椭圆方程的限制加性 Schwarz 预条件子
  • DOI:
    10.4208/aamm.2014.m669
  • 发表时间:
    2016-12
  • 期刊:
    Advances in Applied Mathematics and Mechanics
  • 影响因子:
    1.4
  • 作者:
    Liu Zhiyong;He Yinnian
  • 通讯作者:
    He Yinnian

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

刘智永的其他基金

径向基函数多尺度配点算法研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码