有关谱序列的若干问题研究

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    11171161
  • 项目类别:
    面上项目
  • 资助金额:
    40.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    A0111.代数拓扑与几何拓扑
  • 结题年份:
    2015
  • 批准年份:
    2011
  • 项目状态:
    已结题
  • 起止时间:
    2012-01-01 至2015-12-31

项目摘要

在本项目中,我们将利用谱序列(主要包括Adams谱序列、May谱序列等)、Massey积、有序链复形等代数拓扑知识以及有关p进制表示等数论知识,在球面稳定同伦群新元素族的发觉、模p Steenrod 代数A的上同调的决定(主要包括:完全决定4维上同调群、找到若干高维的非平凡元素族等)、收敛到twisted de Rham上同调的谱序列的高阶微分的表示形式等方面开展研究工作。研究球面稳定同伦群是近几十年来代数拓扑中的一个中心问题,它对代数拓扑本身及其他许多数学分支都有着重要的作用;模p Steenrod代数A的上同调是我们利用经典Admas谱序列来研究球面稳定同伦群时首先面对的代数问题,它是决定球面稳定同伦群的最重要数据;在收敛到twisted de Rham上同调的谱序列的高阶微分的研究中,我们将扩充Atiyah与Segal的相关结果,得到该谱序列在更一般情况下的高阶微分的统一表达公式。

结项摘要

在本项目中,我们利用谱序列(主要包括Adams谱序列、May谱序列等)、Massey积、有序链复形等代数拓扑知识以及有关p进制表示等数论知识,在球面稳定同伦群新元素族的发觉、模p Steenrod 代数A的上同调的决定(主要包括:完全决定4维上同调群、找到若干高维的非平凡元素族等)、收敛到twisted de Rham上同调的谱序列的高阶微分的表示形式等方面开展研究工作。. 1、研究球面稳定同伦群是近几十年来代数拓扑中的一个中心问题,它对代数拓扑本身及其他许多数学分支都有着重要的作用。在本项目中,我们得到了一系列研究成果,共发掘8族球面稳定同伦群的新元素族。例如:$(b_0h_n+h_1b_{n-1})h_m\tilde{\beta}_{s+2}$-同伦元素族、$(b_0h_m+h_1b_{m-1})h_n\tilde{\beta}_{s+2}$-同伦元素族、$\zeta _{n - 1}\beta _{1}\beta _{s+2}$-同伦元素族、$\zeta_{n-1}\beta_2\gamma_{s+3}$-同伦元素族等。这些都是球面稳定同伦群的重要成果。. 2、 模$p$Steenrod代数的上同调是我们利用经典Adams谱序列研究球面稳定同伦群首先面对的问题,因而其是我们决定球面稳定同伦群的最重要的数据。在本项目中,我们得到了一系列成果,证明在 模$p$Steenrod代数的上同调中存在非平凡的$h_0h_n \tilde \delta _{s + 4}$-元素、$h_ng_0\tilde{\delta}_{s+4}$-元素、 $h_n h_m \tilde\delta _{s + 4}$-元素、$b_0k_0\tilde{\delta}_{s+4}$-元素。这些为我们发掘球面稳定同伦群的新元素族奠定了基础。. 3、 在收敛到twisted de Rham上同调的谱序列的高阶微分方面,我们考虑更一般的情况,利用Massey 积,通过我们定义的特定元素(specific element)来给出谱序列的高阶微分的统一表达公式,扩充Atiyah 与Segal 的相关结果。. 除了这些,我们也得到了有理同伦论方面的一些结果。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Two-stage spaces and the torus rank conjecture
两级空间和环面秩猜想
  • DOI:
    10.1016/j.topol.2016.01.006
  • 发表时间:
    2016-04
  • 期刊:
    Topology and Its Applications
  • 影响因子:
    0.6
  • 作者:
    Yanlong Hao;Xiugui Liu;Qianwen Sun
  • 通讯作者:
    Qianwen Sun
Existence of -element in the stable homotopy of spheres
球体稳定同伦中-元素的存在性
  • DOI:
    --
  • 发表时间:
    2014
  • 期刊:
    Journal of Homotopy and Related Structures
  • 影响因子:
    0.5
  • 作者:
    Liu, Xiugui;Liu, Shichang;Huang, Ruizhi
  • 通讯作者:
    Huang, Ruizhi
关于同伦元素$\alpha_1\beta_1\beta_2\gamma_s$
  • DOI:
    --
  • 发表时间:
    2013
  • 期刊:
    数学年刊A辑(中文版)
  • 影响因子:
    --
  • 作者:
    钟立楠;刘秀贵
  • 通讯作者:
    刘秀贵
The rational homotopical nilpotency of principal -bundles
主丛有理同伦幂零性
  • DOI:
    --
  • 发表时间:
    2013
  • 期刊:
    Topology and Its Applications
  • 影响因子:
    0.6
  • 作者:
    Liu, Xiugui;Huang, Ruizhi
  • 通讯作者:
    Huang, Ruizhi
On a family involving R.L. Cohen#39;s $\zeta$-element (II)
关于涉及 R.L. Cohen 的家庭
  • DOI:
    --
  • 发表时间:
    2015
  • 期刊:
    Science China Mathematics
  • 影响因子:
    --
  • 作者:
    Hong, Jianguo;Liu, Xiugui;Zheng, Da
  • 通讯作者:
    Zheng, Da

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

关于同伦元素_1_1_2_s
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
    数学年刊A辑(中文版)
  • 影响因子:
    --
  • 作者:
    钟立楠;刘秀贵
  • 通讯作者:
    刘秀贵
Adams谱序列上的非平凡乘积b_0k_0δ_(s+4)
  • DOI:
    --
  • 发表时间:
    2014
  • 期刊:
    数学物理学报
  • 影响因子:
    --
  • 作者:
    钟立楠;刘秀贵
  • 通讯作者:
    刘秀贵
模p-Steenrod代数高维上同调群中的一个非平凡乘积元
  • DOI:
    --
  • 发表时间:
    2018
  • 期刊:
    数学的实践与认识
  • 影响因子:
    --
  • 作者:
    王冲;刘秀贵
  • 通讯作者:
    刘秀贵

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

刘秀贵的其他基金

球面稳定同伦群与广义Sullivan猜想
  • 批准号:
    11571186
  • 批准年份:
    2015
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
有关球面、Moore空间及相关同伦群的研究
  • 批准号:
    10501045
  • 批准年份:
    2005
  • 资助金额:
    13.0 万元
  • 项目类别:
    青年科学基金项目

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码