基于正切推力的近地及火星探测轨道转移和轨道交会研究

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    11402062
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    25.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    A0705.飞行器和载运系统动力学
  • 结题年份:
    2017
  • 批准年份:
    2014
  • 项目状态:
    已结题
  • 起止时间:
    2015-01-01 至2017-12-31

项目摘要

Tangential thrust is the most efficient direction strategy since it changes the mechanical energy of the orbit at the maximum rate. Tangential thrust has many merits, e.g., simpler thrust direction, less energy consumption and significant improvement in transfer-trajectory safety. According to the magnitude of the thrust, tangential thrust can be divided into two categories: impulse tangential thrust and continuous tangential thrust. Classical Hohmann transfer is a two-impulse cotangent transfer between coplanar circular orbits, and it is the minimum-energy transfer among all the two-impulse orbital transfers. This project will study the Earth-Mars orbit design with the impulse tangential thrust and the two-body absolute motion and relative motion orbital transfer and orbital rendezvous with the continuous tangential thrust. For limited magnitude of the tangent impulse, we will use the patched conic method and the B-plane correction technique, to solve the minimum-energy transfer with two tangent impulses from the Earth parking orbit to the elliptic orbit around Mars. Considering the limited thrust acceleration and the bounded transfer-trajectory radius, we will utilize the shape-based inverse polynomial method to solve the constrained absolute orbit transfer and orbit rendezvous problems. When the relative range between two spacecraft is small, we will derive the nonlinear relative motion equation with the continuous tangential thrust in the chaser's frame, and use the generating function method to solve the optimal control for the relative-motion orbit rendezvous problem. The research of this project can provide theoretical basis for the orbit transfer and the orbit rendezvous missions in low Earth orbit and Mars exploration.
正切推力是改变瞬间轨道机械能最有效的方向策略,它具有简单的推力方向、更少的能量消耗、更安全的转移轨迹等优势。根据推力的大小,正切推力分为脉冲正切推力和连续正切推力。经典的霍曼转移是共面圆轨道之间的双脉冲双正切转移,在所有双脉冲转移中能量最小。本课题将研究脉冲正切推力在探火星三体轨道设计,以及连续正切推力在二体绝对运动和相对运动轨道转移和交会中的应用。考虑正切脉冲大小受限时,利用圆锥曲线拼接和B平面修正技术,研究两次正切脉冲实现从地球停泊轨道到环绕火星椭圆轨道的最小能量转移;考虑连续正切推力大小约束和转移轨迹半径约束,利用基于形状的逆多项式法求解约束条件下的绝对轨道转移和交会问题;考虑两飞行器距离较小时,研究追踪器坐标系下连续正切推力的非线性相对运动方程,利用生成函数法求解相对运动轨道交会的最优控制问题。本课题的研究可为正切推力下的近地、火星探测轨道转移和轨道交会任务提供理论依据。

结项摘要

正切推力是指推力方向沿着轨迹的切线方向,是改变瞬间轨道机械能最有效的方向策略。本项目针对正切推力轨道机动问题,主要研究了正切脉冲和正切连续小推力下的轨道转移、轨道交会和星下点轨迹调整问题。针对正切脉冲推力,研究了单次和多次脉冲的星下点轨迹调整轨道机动问题,考虑精确飞越和姿态摆动两种情况,得到了J2摄动下的脉冲近似解析解;针对脉冲轨道转移问题,提出了一种利用两次周向脉冲实现轨道转移的方法,适用于任何共面椭圆轨道情况。针对正切连续推力,研究了适用于轨迹半径、推力幅值等约束条件下的修正逆多项式形状函数法,可用于连续低推力下探火星和近地轨道初始轨道设计问题。针对共面椭圆低推力轨道转移和交会问题,提出了一种基于半长轴的形状函数法,严格证明了该形状函数对转移问题能够满足轨迹安全约束。针对异面椭圆低推力轨道转移和交会问题,基于初始轨道平面为参考平面,提出了一种新的仰角和轨迹半径函数,可适用于大范围轨道平面变化的异面轨迹优化问题。本课题的研究成果可为正切推力近地及深空探测轨道机动任务提供理论和技术支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
采用SDRE方法的无径向推力最优轨道控制
  • DOI:
    --
  • 发表时间:
    2017
  • 期刊:
    宇航学报
  • 影响因子:
    --
  • 作者:
    张相宇;张刚;曹喜滨
  • 通讯作者:
    曹喜滨
J2摄动下脉冲推力星下点轨迹调整解析算法
  • DOI:
    --
  • 发表时间:
    2016
  • 期刊:
    宇航学报
  • 影响因子:
    --
  • 作者:
    盛靖;张刚;耿云海
  • 通讯作者:
    耿云海
Simple Shaping Approximation for Low-Thrust Trajectories Between Coplanar Elliptical Orbits
共面椭圆轨道之间低推力轨迹的简单成形近似
  • DOI:
    10.2514/1.g001209
  • 发表时间:
    2015-07
  • 期刊:
    Journal of Guidance, Control, and Dynamics
  • 影响因子:
    --
  • 作者:
    Xie Chengqing;Zhang Gang;Zhang Yingchun
  • 通讯作者:
    Zhang Yingchun
Impulsive Ground-Track Adjustment for Assigned Final Orbit
为指定的最终轨道进行脉冲地面轨道调整
  • DOI:
    10.2514/1.a33447
  • 发表时间:
    2016-06
  • 期刊:
    Journal of Spacecraft and Rockets
  • 影响因子:
    1.6
  • 作者:
    Zhang Gang;Sheng Jing
  • 通讯作者:
    Sheng Jing
Analytical approximate solutions to ground track adjustment for responsive space
响应空间地面轨迹调整的解析近似解
  • DOI:
    10.1109/taes.2016.140644
  • 发表时间:
    2016-07
  • 期刊:
    IEEE Transactions on Aerospace and Electronic Systems
  • 影响因子:
    4.4
  • 作者:
    Zhang Gang;Cao Xibin;Mortari Daniele
  • 通讯作者:
    Mortari Daniele

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

铜表面微结构化对惰性润湿和反应润湿的影响
  • DOI:
    --
  • 发表时间:
    2020
  • 期刊:
    材料导报
  • 影响因子:
    --
  • 作者:
    杨海鹏;石玗;林巧力;慈文娟;张刚
  • 通讯作者:
    张刚
脉冲TIG 焊熔池表面振荡及变形行为的动态传感
  • DOI:
    --
  • 发表时间:
    2014
  • 期刊:
    上海交通大学学报
  • 影响因子:
    --
  • 作者:
    张刚;樊丁;石玗
  • 通讯作者:
    石玗
基于MongoDB的BESIII分布式计算记账系统的研究与实现
  • DOI:
    --
  • 发表时间:
    2015
  • 期刊:
    计算机应用研究
  • 影响因子:
    --
  • 作者:
    张刚;邓子艳;张晓梅
  • 通讯作者:
    张晓梅
多用户正交差分混沌键控通信系统
  • DOI:
    --
  • 发表时间:
    2019
  • 期刊:
    系统工程与电子技术
  • 影响因子:
    --
  • 作者:
    张刚;陈和祥;张天骐
  • 通讯作者:
    张天骐
斜拉索-磁流变阻尼器刚柔耦合建模及仿真分析
  • DOI:
    --
  • 发表时间:
    2020
  • 期刊:
    振动与冲击
  • 影响因子:
    --
  • 作者:
    周勇;刘小锋;陈跃华;冯志敏;张刚;胡海刚
  • 通讯作者:
    胡海刚

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

张刚的其他基金

非均匀传输线网络中阻抗微变点的原位检测与状态估计方法
  • 批准号:
    52377003
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向快速响应任务的卫星星下点轨迹调整轨道机动技术研究
  • 批准号:
    11772104
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
考虑几何结构随机性的线缆束电磁耦合效应分析方法研究
  • 批准号:
    51507041
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码