多层聚丙交酯共聚物/壳聚糖电纺膜定位负载microRNA的血管再生活性材料

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    51473118
  • 项目类别:
    面上项目
  • 资助金额:
    85.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    E0308.生物医用有机高分子材料
  • 结题年份:
    2018
  • 批准年份:
    2014
  • 项目状态:
    已结题
  • 起止时间:
    2015-01-01 至2018-12-31

项目摘要

Cardiovascular diseases seriously threaten human's health and create an important demand for small-diameter (<6mm) vascular grafts. Due to the limitation of autografts and allografts, development of tissue engineering vascular grafts is a promising solution. Although many relevant studies on small-diameter vascular scaffolds have been done, it is still difficult to keep long-term patency, because restenosis usually happens after implantation. One of the most important factors causing restenosis is intimal hyperplasia by the excessive proliferation of vascular smooth muscle cells (SMCs). Besides, rapid endothelialization is also important. Therefore, it is necessary to promote endothelialization and inhibit SMC hyperproliferation during the regeneration of blood vessels. In this project, we propose a novel method to prepare bioactive small-diameter vascular grafts by loading microRNAs to regulate vascular regeneration. It was reported that angiogenic growth factors such as vascular endothelial growth factor (VEGF) modulate vascular endothelial cell (EC) proliferation, migration and adhesion. MicroRNA-126 (miR-126) could inhibit production of endogenous VEGF repressors such as Spred-1 within ECs and promote VEGF signaling. On the other hand, SMC excessive proliferation is modulated by many cytokines, and one of them is platelet-derived growth factor-bb (PDGF). It was reported that miR-145 could inhibit PDGF-induced SMC proliferation and migration through targeting KLF5. In addition, the peptide sequences Arg-Glu-Asp-Val (REDV) and Val-Ala-Pro-Gly (VAPG) are known to bind preferentially to ECs and SMCs, respectively. Thus, multi-layered (2 or 3) electrospun membranes or tubes consisted of poly(ethylene glycol)-b-poly(L-lactide-co-ε-caprolactone) and other related copolymers will be developed, while chitosan nanoparticles loading microRNAs (miR-126 and miR-145) will be encapsulated in inner and middle layers (or outer of double-layers) of the multilayered electrospun fibers, respectively for spatio-temporal control of EC and SMC growth. Also, chitosan nanoparticles, the inner and middle layers will be surface-functionalized by targeting peptides (REDV and VAPG) to promote binding to ECs and SMCs, respectively. The microRNA encapsulation and transfection efficiency will be controlled by the chitosan nanoparticle physiochemical properties and the morphology of electrospun membranes. The spatio-temporal modulating mechanism of EC and SMC growth, the encapsulation approaches of chitosan nanoparticles within electrospun membranes and the release behaviors under biomechanical stimulation will be focused on. In vivo replacement experiments in an animal model using the small-diameter vascular grafts will be carried out to evaluate the in situ regeneration of the vascular tissue. The investigation of bioactive vascular grafts based on microRNAs will provide new strategies and fundamental theories for the small-diameter vascular reconstruction.
心血管疾病是人类常见的重大疾患之一,直径<6mm的小口径人工血管材料虽已研究多年,但移植后仍会出现再狭窄等问题,这主要与血管平滑肌细胞(SMCs)过度增殖有关。本项目拟从调控血管再生的microRNA出发,构建新型血管再生活性材料。以壳聚糖偶联选择性多肽(REDV或VAPG)为载体包载microRNA成纳米粒子,并负载于以聚乙二醇-b-聚(丙交酯-co-己内酯)等为原料、由同轴电纺等方法制备的多层超细纤维膜(管)中。使内层和中层分别定位负载miR-126和miR-145,以定时定位调控血管内皮细胞(ECs)和SMCs,促进血管再生初期快速内皮化、中期稳定性和长期维持血管通畅的能力。重点研究壳聚糖载体及多层电纺膜对miRNA的负载方法、生物力学环境下的释放行为和控制因素,以及体外和体内定位、定时调控ECs和SMCs及相互作用的影响机制。为构建新型原位诱导血管再生材料提供新思路和理论基础。

结项摘要

血栓、内膜增生和钙化等不良症状是制约小口径血管再生的主要因素。本项目将微小核酸(miRNAs)与电纺纤维膜相结合,制备了新型生物活性小口径人工血管材料。在电纺纤维中载入miRNA-126和/或miRNA-145,调控血管内皮细胞(VECs)和血管平滑肌细胞(VSMCs)的生理功能,以促进快速内皮化,并抑制VSMCs过度增殖。.制备了三甲基化壳聚糖偶联选择性小肽REDV和VAPG的载体TMC-g-PEG-REDV (TPR)、TMC-g-PEG-VAPG (TPV)和葡聚糖-g-聚赖氨酸偶联VAPG (DPV),分别用于复合miRNA-126和miRNA-145,载入电纺纤维膜,分别定向调控VECs和VSMCs。以聚乙二醇-b-聚(L-丙交酯-co-ε-己内酯) (PELCL)、聚(L-丙交酯-co-乙交酯) (PLGA)和聚(ε-己内酯) (PCL)等为主要原料,由乳液电纺方法制备了双层或三层超细纤维膜和小口径人工血管,内层和外层(或中层)分别负载miRNA-126和miRNA-145,进行了体外释放、细胞培养和体内动物试验研究。.以负载TPR/miRNA-126的PELCL与PCL/明胶制备了双层电纺纤维膜,表明miRNA-126可保持活性;以PELCL为内层,在外层PLGA中负载DPV/miRNA-145制备的双层人工血管,可使VSMCs正常表达收缩表型。以PELCL/PEG电纺纤维负载TPR/miRNA-126为内层、微米直径PLGA电纺纤维负载TPV/miRNA-145为外层制备的双层人工血管材料,具有较快释放miRNA-126和较慢释放miRNA-145的作用,可促进血管再生。以PELCL/PELCL-REDV为内层负载TPR/miRNA-126、中层为PELCL负载TPV/miRNA-145、外层为PCL制备的三层电纺纤维膜人工血管,进一步表明上述两种miRNAs分别对VECs和VSMCs具有调控作用,可促进内皮化,抑制内膜增生,同时还可调控巨噬细胞表型,减少血管再生过程中的炎症和钙化现象。因此,负载miRNA-126和/或miRNA-145的生物活性多层电纺纤维膜可为小口径人工血管的制备提供新方法。.在此项目资助下,已在Acta Biomater.、J. Mater. Chem. B等期刊发表研究论文11篇,及1篇综述,申请国家发明专利9项,授权1项。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(15)
专利数量(10)
Antibacterial PCL electrospun membranes containing synthetic polypeptides for biomedical purposes
用于生物医学目的的含有合成多肽的抗菌 PCL 电纺膜
  • DOI:
    10.1016/j.colsurfb.2018.08.055
  • 发表时间:
    2018-12-01
  • 期刊:
    COLLOIDS AND SURFACES B-BIOINTERFACES
  • 影响因子:
    5.8
  • 作者:
    Liu, Bo;Yao, Tiantian;Yuan, Xiaoyan
  • 通讯作者:
    Yuan, Xiaoyan
生物活性电纺膜小口径血管材料研究进展
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
    高分子通报
  • 影响因子:
    --
  • 作者:
    崔策;赵蕴慧;袁晓燕
  • 通讯作者:
    袁晓燕
Electrospun PELCL membranes loaded with QK peptide for enhancement of vascular endothelial cell growth
负载 QK 肽的电纺 PELCL 膜可增强血管内皮细胞生长
  • DOI:
    10.1007/s10856-016-5705-6
  • 发表时间:
    2016-04
  • 期刊:
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE
  • 影响因子:
    3.7
  • 作者:
    Yang Yang;Yang Qingmao;Zhou Fang;Zhao Yunhui;Jia Xiaoling;Yuan Xiaoyan;Fan Yubo
  • 通讯作者:
    Fan Yubo
Integrated antibacterial and antifouling surfaces via cross-linking chitosan-g-eugenol/zwitterionic copolymer on electrospun membranes
通过在电纺膜上交联壳聚糖-g-丁香酚/两性离子共聚物来集成抗菌和防污表面
  • DOI:
    10.1016/j.colsurfb.2018.04.056
  • 发表时间:
    2018-09-01
  • 期刊:
    COLLOIDS AND SURFACES B-BIOINTERFACES
  • 影响因子:
    5.8
  • 作者:
    Li, Zhenguang;Hu, Wenhong;Yuan, Xiaoyan
  • 通讯作者:
    Yuan, Xiaoyan
Nanofiber-mediated microRNA-126 delivery to vascular endothelial cells for blood vessel regeneration
纳米纤维介导的 microRNA-126 递送至血管内皮细胞以促进血管再生
  • DOI:
    10.1016/j.actbio.2016.07.048
  • 发表时间:
    2016
  • 期刊:
    Acta Biomaterialia
  • 影响因子:
    9.7
  • 作者:
    Zhou Fang;Jia Xiaoling;Yang Yang;Yang Qingmao;Gao Chao;Hu Suli;Zhao Yunhui;Fan Yubo;Yuan Xiaoyan
  • 通讯作者:
    Yuan Xiaoyan

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

受教育程度对女性劳动时间 配置的影响研究
  • DOI:
    --
  • 发表时间:
    2017
  • 期刊:
    上海经济研究
  • 影响因子:
    --
  • 作者:
    袁晓燕;石磊
  • 通讯作者:
    石磊
活体虹膜图像的定位与分割
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
    数据采集与处理,EI收录
  • 影响因子:
    --
  • 作者:
    袁晓燕;施鹏飞
  • 通讯作者:
    施鹏飞
bFGF-PLGA缓释微球及其体外释药性能研究
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
    中国生化药物杂志
  • 影响因子:
    --
  • 作者:
    武继民;汪鹏飞;李志宏;袁晓燕
  • 通讯作者:
    袁晓燕
span style=color:#141314;font-family:宋体;font-size:12pt;多糖多肽水凝胶的增强研究/span
  • DOI:
    --
  • 发表时间:
    2014
  • 期刊:
    化学进展
  • 影响因子:
    --
  • 作者:
    宋利锋;赵瑾;袁晓燕
  • 通讯作者:
    袁晓燕
载荷bFGF-PLGA微球的胶原海绵及其体外缓释性能研究
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
    天津大学学报
  • 影响因子:
    --
  • 作者:
    武继民;汪鹏飞;李志宏;刘永清;袁晓燕
  • 通讯作者:
    袁晓燕

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

袁晓燕的其他基金

糖功能化聚氨基酸的多级结构调控与冷冻保护细胞和蛋白质的研究
  • 批准号:
    52373152
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
生物杂化电纺纤维/水凝胶类血管基质材料及其自适应细胞诱导作用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
海藻糖氨基酸共聚物的结构调控及其对红细胞的低温冻存保护作用
  • 批准号:
    51773150
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
POSS-氟丙烯酸酯-聚硅氧烷共聚物微结构调控及低温防冰性能
  • 批准号:
    51273146
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
骨-软骨界面再生修复的梯度活性支架与细胞响应关系
  • 批准号:
    51073117
  • 批准年份:
    2010
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目
生物降解核/壳结构超细纤维及其控制释放生长因子的研究
  • 批准号:
    50573055
  • 批准年份:
    2005
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目
静电纺丝制备聚丙交酯/壳聚糖超细纤维杂化膜的研究
  • 批准号:
    50273027
  • 批准年份:
    2002
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码