准二维原子晶体的离子储能机制分析

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    21373255
  • 项目类别:
    面上项目
  • 资助金额:
    82.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    B0205.电化学
  • 结题年份:
    2017
  • 批准年份:
    2013
  • 项目状态:
    已结题
  • 起止时间:
    2014-01-01 至2017-12-31

项目摘要

Quasi-two dimensional (2D) few-layer atomic crystals including few-layer graphene (1-9 atomic layer) are new matters that have quantum structures different from their mother material layered compounds, unusual physical and chemical properties, and thus possibly support conceptual and advanced energy storage. I, the project applicant, have invented a new method of efficient and non-oxidative exfoliation of graphite into high-quality of few-layer graphene flakes and also applied them for the anode of lithium ion secondary battery with a preliminary result of good and flat charge/discharge curves in contrast with the one of reduced graphene oxide's. Based on these, I propose here the investigation of the energy storage mechanism of electrochemical interaction between metal ions and quasi-2D few-layer atomic crystals, or say, the mechansim of metal ion diffusion related to electrochemical energy storage into quasi-2D few-layer atomic crystals. A hypothesis of the diffusion mechanism related to energy storage of either lithium ion intercalation into the interlayer of each few-layer graphene flake or absorption onto the surface of few-layer graphene flakes stacked in a limited distance was suggested. The experiments to obtain the relationship between the performances (such as specific capacity) of both lithium ion battery and aluminum ion battery and the factors of the layer number of few-layer graphene flake and the inter-distance of the flakes stacked will be carried out to validate the hypothesis, which is based on the rule that Li+ ion is so small and can intercalate into the interlayer of each few-layer graphene flake while Al3+ ion is too large to intercalate into it. This project will also involve the study of few-layer graphene and other quasi-2D oxide crystals (such as few-layer V2O5 and CoO2) working as new type of electrodes of secondary ion batteries, the comparison of the performances of lithium ion battery and renewable aluminum ion battery with theoretically higher energy density, and fundamental issues of the application of quasi-2D atomic crystals to advanced secondary ion battery. To clarify the energy storage mechanism of electrochemical interaction between metal ions and quasi-2D atomic crystals, it will be carried out for the comparative study of the relationships between the performances of batteries and the factors of the compositions and the layer number of quasi-2D atomic crystal nanosheet, the direction and the inter-distance range of the nanosheets stacked, and the size and the valence of ions. According to the mechansim illustrated, new printable film battery will be fabricated, and new theory for energy storage will be expected, too.
以若干层(1-9原子层)石墨烯为代表的准二维原子晶体新型材料具有与层状化合物母材料不同的量子结构和物化性能(如胶体分散性),可能带来能量储存新形态。申请人在发明石墨非氧化层离高效制备若干层石墨烯及其为负极的锂离子电池具有可逆的充放电平台的基础上,提出其离子电化学储能机制的研究。先假定锂离子扩散机理为Li+插层于若干层石墨烯单片的层间或者石墨烯片堆砌后限域性的表面吸附,后拟研究锂离子和铝离子电池的比容量与石墨烯层数及堆砌方式等因素的关联来求证鉴别,因为小的Li+能插层而大的Al3+不能。以若干层氧化物(如V2O5、CoO2)片层和石墨烯分别作为离子电池的正极和负极材料,系统地类比和比较性研究电池比容量等性能与准二维原子晶体的成分和层数、组装的取向及片与片的间距、离子的大小和价态等因素的内在关系,界定其离子电化学储能机理的边界条件,构造可印刷的新型薄膜电池,并期待构建新的存储理论。

结项摘要

本课题以若干层(1-9原子层)石墨烯为代表的准二维原子晶体新型材料的制备为突破口,成功研究了石墨烯等与层状化合物母材料不同的量子结构和物化性能(如良好的胶体分散性),成功研究了合成的新材料在能量储存应用中的新形态、新原理和新机制。申请人首先发明了电化学法从微晶石墨原矿中直接电解和机械剥离制备若干层小石墨烯微米片的方法,并发现了其良好的分散性和作为锂电池负极和导电剂的应用价值,获得了国家发明专利授权,并许可企业进行了石墨烯制备的中试放大。该小石墨烯还可以储硫作为长寿命锂硫电池,2000循环库伦效率99%以上。另外,还发现了同时制备石墨烯和负载的单分散金属原子的方法,获得了良好的电化学催化性能。研究证实了Li+能插层若干层石墨烯而大的Al3+不能若干层石墨烯的假设。系统地研究了锂电池比容量等性能与准二维原子晶体的成分和层数、组装的取向及片与片的间距、离子的大小和价态等因素的内在关系,界定了其离子电化学储能机理的边界条件,构造了高性能锂电池和空气电池。由于石墨烯的极大关注和广阔的应用价值以及石墨烯制备的重要突破,本课题着重于石墨烯的应用基础研究,获得了众多创新性成果。申请国家发明专利4项,授权3项,技术许可费500万,发表学术论文13篇,参加国内外学术会议26人次,培养毕业研究生2名和副研究员1名。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(1)
会议论文数量(0)
专利数量(4)
Three-Dimensional Framework of Graphene Nanomeshes Shell/Co3O4 Synthesized as Superior Bifunctional Electrocatalyst for Zinc−Air Batteries
石墨烯纳米网-壳/Co3O4 的 3D 框架合成为锌空气电池的优质双功能电催化剂
  • DOI:
    10.1021/acsami.7b13290
  • 发表时间:
    2017
  • 期刊:
    ACS Applied Materials Interfaces
  • 影响因子:
    --
  • 作者:
    Congwei Wang;Zheng Zhao;Xiaofeng Li;Rui Yan;Jie Wang;Anni Li;Xiaoyong Duan;Junying Wang;Yong Liu;Junzhong Wang
  • 通讯作者:
    Junzhong Wang
Graphene integrating carbon fiber and hierarchical porous carbon formed robust flexible “carbon-concrete” supercapacitor film
石墨烯集成碳纤维和分层多孔碳形成坚固的柔性“碳-混凝土”超级电容器薄膜
  • DOI:
    10.1016/j.carbon.2017.10.043
  • 发表时间:
    2017
  • 期刊:
    Carbon
  • 影响因子:
    10.9
  • 作者:
    Huinian Zhang;Anni Li;Jie Wang;Yan Zhang;Zheng Zhao;Huifang Zhao;Miao Cheng;Congwei Wang;Junying Wang;Junzhong Wang;Shouchun Zhang
  • 通讯作者:
    Shouchun Zhang
Nitrogen-Doped Graphene Flakes/Dots /Fe3N as Oxygen Reduction Reaction Electrocatalyst
氮掺杂石墨烯片/点/Fe3N作为氧还原反应电催化剂
  • DOI:
    --
  • 发表时间:
    2016
  • 期刊:
    Advanced Material Letters
  • 影响因子:
    --
  • 作者:
    Rui Yan;Huinian Zhang;Congwei Wang;Yongzhi Liu;Quangui Guo;Junzhong Wang
  • 通讯作者:
    Junzhong Wang
Synthesis and in-situ functionalization of graphene films through graphite charging in aqueous Fe2(SO4)3
通过在 Fe-2(SO4)(3) 水溶液中充电石墨烯薄膜的合成和原位功能化
  • DOI:
    10.1016/j.carbon.2016.06.018
  • 发表时间:
    2016-10
  • 期刊:
    Carbon
  • 影响因子:
    10.9
  • 作者:
    Rui Yan;Kai Wang;Congwei Wang;Huinian Zhang;Yan Song;Quangui Guo;Junzhong Wang
  • 通讯作者:
    Junzhong Wang
Hierarchical Porous Graphene Carbon-Based Supercapacitors
分层多孔石墨烯碳基超级电容器
  • DOI:
    10.1021/cm504618r
  • 发表时间:
    2015-03-24
  • 期刊:
    CHEMISTRY OF MATERIALS
  • 影响因子:
    8.6
  • 作者:
    Huang, Jianlin;Wang, Junyin;Wang, Junzhong
  • 通讯作者:
    Wang, Junzhong

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

王俊中的其他基金

储能应用导向的石墨烯-石油基多级孔纳米碳材料的制备
  • 批准号:
    U1662102
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    联合基金项目

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码