微分动力系统的若干问题探索

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    11301088
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    22.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    A0303.动力系统与遍历论
  • 结题年份:
    2016
  • 批准年份:
    2013
  • 项目状态:
    已结题
  • 起止时间:
    2014-01-01 至2016-12-31

项目摘要

The study of topological and ergodic theory on dynamics beyond uniform hyperbolicity is the core research in modern dynamical systems. Our project is mainly concentrated on two parts: one is to study the chaotic properties of Birkhorff Irregular set and Lyapunov Irregular set; another is to consider one conjecture by Abdenur and Diaz: for generic diffeomorphisms, shadowing implies uniform hyperbolicity. We will use tools such as Pesin theory, Liao theory and its development, perturbation technique and approximation of Lyapunov exponents to open up our research. One aim of this project is to expand and enrich the topological and ergodic theory of dynamics beyond uniform hyperbolicity, and another is to search new discriminant rule for uniform hyperbolicity. And these will become theoretical basis for hot problems of modern differential dynamical systems.
一致双曲之外动力系统的拓扑和遍历性质的探索是当前微分动力系统的核心研究内容,本项目将主要围绕两个方面:一是探索Birkhorff非正则点集、Lyapunov非正则点集的混沌特征,二是考虑Abdenur-Diaz提出的通有条件下shadowing意味着一致双曲的猜测,结合Pesin理论、廖理论及其最新发展、扰动技术、Lyapuonv指数逼近等成果,展开一系列相关热点问题的研究。本项目的研究对拓展和丰富一致双曲之外动力系统的拓扑理论、遍历理论和寻找一致双曲新型判别法都有重要意义,并为当前微分动力系统领域的很多热点问题奠定理论基础。

结项摘要

本项目的研究工作主要围绕动力系统与遍历论领域的伪轨跟踪、拓扑熵、Birkhoff非正则点集与Lyapunov非正则点集的混沌特征、回复性及相关课题展开,取得的主要成果有:(1)将Birkhoff遍历的非正则点集与回复点集的各种层次联系起来,在一定条件下证明了它们各自都能达到与系统本身一致的复杂性,此成果适用于双曲、非一致双曲系统和符号系统等;(2)我们对具有渐进平均跟踪的动力系统,证明饱和集的存在性并用它来证明Birkhoff遍历的非正则点集合的存在及稠密性等;(3)对具有控制分解但光滑度仅要求C^1的微分流,重新构造了Pesin集合与Pesin块,并利用廖先生的准双曲理论实现了Pesin集合与Pesin块上的伪轨跟踪性质及相应的一些应用等学术成果。这些成果丰富和拓展了动力系统特别是一致双曲之外动力系统的拓扑理论和遍历理论,也对后续研究流的熵消失现象、SRB-like测度的重分形等课题有着重要启发和帮助。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-uniformly hyperbolic flows and shadowing
非均匀双曲流和阴影
  • DOI:
    10.1016/j.jde.2016.03.001
  • 发表时间:
    2016-07
  • 期刊:
    JOURNAL OF DIFFERENTIAL EQUATIONS
  • 影响因子:
    2.4
  • 作者:
    Sun Wenxiang;Tian Xueting;Vargas Edson
  • 通讯作者:
    Vargas Edson
Dominated Splitting, Partial Hyperbolicity and Positive Entropy
支配分裂、部分双曲性和正熵
  • DOI:
    --
  • 发表时间:
    2016
  • 期刊:
    Discrete and Continuous Dynamical Systems
  • 影响因子:
    1.1
  • 作者:
    Catsigeras, Eleonora;Tian, Xueting
  • 通讯作者:
    Tian, Xueting
Pesin’s entropy formula for systems between C1 and C1+r
C1 和 C1 r 之间系统的 Pesin 熵公式
  • DOI:
    --
  • 发表时间:
    2014
  • 期刊:
    Journal of Statistical Physics
  • 影响因子:
    1.6
  • 作者:
    Tian, Xueting
  • 通讯作者:
    Tian, Xueting

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

田学廷的其他基金

弱双曲动力系统的遍历理论研究
  • 批准号:
    11671093
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码