基于深度强化学习的新闻事件预测方法研究

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    61806020
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    25.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    F0606.自然语言处理
  • 结题年份:
    2021
  • 批准年份:
    2018
  • 项目状态:
    已结题
  • 起止时间:
    2019-01-01 至2021-12-31

项目摘要

An event with the process of happening, evolving, and ending typically contains a sequence of subevents. There usually exists certain common pattern among the subevents. We can discover the sequential pattern of subevents from a large scale of historical events, and thus apply for future subevent prediction of a new event. It is very important for the government to monitor and guide public opinion of emergencies. First, this project addresses the issues of high dimension, sparse semantics, and the need of timely updates for traditional TF-IDF based document representation. It studies joint event detection method based on low-dimensional document representation using deep learning techniques, which can effectively detect events from a large number of historical news. Then, as traditional event representation relies on expert knowledge and needs feature engineering, this project studies unified low-dimensional representation of event-subevents based on deep learning. Finally, it combines deep learning and reinforcement learning techniques to model sequential pattern of subevents and apply it for future subevent prediction of a new event. Through these research contents, this project provides new research ideas and effective methods for big news data intelligence.
一个事件伴随着其发生、发展、结束等过程包含一序列子事件。子事件序列通常存在一定的规律性,通过从大规模历史事件中发现并建模子事件序列规律,用于对新事件的发展预测,对于政府突发事件舆情监控和引导有重要意义。本项目首先针对传统TF-IDF文档表示带来的维度高、语义稀疏、需要及时更新等问题,研究基于低维文档表示的联合事件发现方法,从大量历史新闻中有效发现事件;然后针对传统事件表示依赖于专家知识、特征工程等问题,研究基于深度学习的事件-子事件统一建模和表示方法;最后结合深度学习和强化学习技术,研究基于深度强化学习的子事件序列建模方法,并用于事件预测。通过这些研究内容,本项目为新闻大数据智能提供了新的研究思路和有效方法。

结项摘要

一个事件伴随着其发生、发展、结束等过程包含一序列子事件。子事件序列通常存在一定的规律性,通过从大规模历史事件中发现并建模子事件序列规律,用于对新事件的发展预测,对于政府突发事件舆情监控和引导有重要意义。本项目首先针对传统TF-IDF文档表示带来的维度高、语义稀疏、需要及时更新等问题,研究基于基于图神经网络的文档表示方法,可以很方便融合任意类型的外部知识;充分利用事件类型信息,研究联合事件发现和预测;最后结合深度学习和强化学习技术,研究基于深度强化学习的子事件序列建模方法,并用于事件预测。通过这些研究内容,本项目为新闻大数据智能提供了新的研究思路和有效方法。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(10)
专利数量(9)
Graph neural entity disambiguation
图神经实体消歧
  • DOI:
    10.1016/j.knosys.2020.105620
  • 发表时间:
    2020-05-11
  • 期刊:
    KNOWLEDGE-BASED SYSTEMS
  • 影响因子:
    8.8
  • 作者:
    Hu, Linmei;Ding, Jiayu;Li, Shaohua
  • 通讯作者:
    Li, Shaohua
Entity set expansion in knowledge graph: a heterogeneous information network perspective
知识图谱中的实体集扩展:异构信息网络视角
  • DOI:
    10.1007/s11704-020-9240-8
  • 发表时间:
    2021-02-01
  • 期刊:
    FRONTIERS OF COMPUTER SCIENCE
  • 影响因子:
    4.2
  • 作者:
    Shi, Chuan;Ding, Jiayu;Li, Xiaoli
  • 通讯作者:
    Li, Xiaoli
RHINE: Relation Structure-Aware Heterogeneous Information Network Embedding
RHINE:关系结构感知的异构信息网络嵌入
  • DOI:
    10.1109/tkde.2020.2982898
  • 发表时间:
    2022-01-01
  • 期刊:
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
  • 影响因子:
    8.9
  • 作者:
    Shi, Chuan;Lu, Yuanfu;Ma, Huadong
  • 通讯作者:
    Ma, Huadong
Graph neural news recommendation with long-term and short-term interest modeling
具有长期和短期兴趣建模的图神经新闻推荐
  • DOI:
    10.1016/j.ipm.2019.102142
  • 发表时间:
    2020-03-01
  • 期刊:
    INFORMATION PROCESSING & MANAGEMENT
  • 影响因子:
    8.6
  • 作者:
    Hu, Linmei;Li, Chen;Shao, Chao
  • 通讯作者:
    Shao, Chao
A neural model for joint event detection and prediction
用于联合事件检测和预测的神经模型
  • DOI:
    10.1016/j.neucom.2020.05.023
  • 发表时间:
    2020-09-24
  • 期刊:
    NEUROCOMPUTING
  • 影响因子:
    6
  • 作者:
    Hu, Linmei;Yu, Shuqi;Li, Xiaoli
  • 通讯作者:
    Li, Xiaoli

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

基于异构中文在线百科的层次话题构建
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
    计算机科学
  • 影响因子:
    --
  • 作者:
    王煦中;刘琰;胡琳梅;陈静
  • 通讯作者:
    陈静

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

胡琳梅的其他基金

融合知识的多模态虚假信息检测关键技术研究
  • 批准号:
    62276029
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码