利用活体动物模型研究代表性纳米载体对血-脑脊液屏障的生物效应

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    31630027
  • 项目类别:
    重点项目
  • 资助金额:
    280.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    C1007.纳米生物学
  • 结题年份:
    2021
  • 批准年份:
    2016
  • 项目状态:
    已结题
  • 起止时间:
    2017-01-01 至2021-12-31

项目摘要

Central nervous system disease is a kind of disease that seriously challenging human health. Traditional treatments for such disease include intracranial administration, transient blood-brain barrier damage, implantation of sustained-released polymeric film etc. Till now, there is still no effective way for the complete cure and eradication of central nervous system disease. This is mainly due to the limitation of current therapeutic technique and blood-brain barrier. The application of nanotechnology for drug delivery is widely expected to bring new hope for non-invasive brain administration. However, whether nanocarriers could penetrate through the blood-brain barrier or not is still very controversial and lack of convincing experimental evidence that is generally accepted by the basic and clinic data. Hence, it is very urgent and essential to study the permeability of nanocarriers on the central nervous system. In our project, we choose gold nanoparticles, which have multiple appealing advantages including controlled particle size distribution, good biocompatibility, and easy of detection, as the representative nanocarrier model; and rats that could be intravenously injected with nanocarriers and from which cerebrospinal fluid could be continuously obtained as live animal model. Blood-cerebrospinal fluid barrier is also used as a representative model of the barrier of central nervous system. Using these models, we would like to systematically study the influence of size distribution and surface modification on the permeability of nanocarriers across blood-cerebrospinal fluid barrier and their unique biological effects in vivo. By virtue of the mechanism by which nanocarriers pass across blood-cerebrospinal fluid barrier, together with rat model of meningitis established based on staphylococcus aureus infection, we wish to further evaluate the effectiveness of optimized nanocarriers in clinical animal models of brain disease. By exploring the permeability of nanocarriers across blood-cerebrospinal fluid barrier and their unique biological effects in live rat models, the present project will provide scientific basis for the future treatment regimen of central nervous system disease. Moreover, clarifying the key factors related to permeability of nanocarriers across blood-cerebrospinal fluid barrier through multidisciplinary will undoubtedly provide an important guidance for revealing their mechanism and clinical application. By means of promoting the multidisciplinary and integration of nanoscience, materials science, medicine etc., we expect to establish anddevelop new models to improve the therapeutic effect of critical diseases of thebrain using nanotechnology.
中枢神经系统疾病是严重危害人类生命健康的疾病,且迄今尚缺乏有效治疗手段。纳米载体的高效输运为脑部非侵入性药物递送提供了可能,但是纳米载体通透血脑屏障的研究因缺乏有力证据而存在争议。针对纳米载体相关特性对其穿透屏障能力和生物效应的影响仍缺乏系统的研究。本项目选择粒径等理化特性可控,生物兼容性好,便于检测的金纳米颗粒为核心且表面经不同修饰的载体为代表性纳米结构,采用可连续获取脑脊液的大鼠为动物模型,以其血脑脊液屏障作为典型中枢神经系统屏障,研究纳米载体不同特征与其对血脑脊液屏障生物效应的关系。建立细菌感染的大鼠脑膜炎模型,研究纳米载体输运庆大霉素的血脑屏障通透能力。本项目通过在活体动物体内探索纳米载体透过血脑脊液屏障的生物效应,阐明决定纳米载体透过血脑屏障的关键因素及其相互作用机制和规律,为中枢神经系统药物递送纳米载体的优化设计和选择提供切实可靠的研究依据,为改善脑部疾病治疗提供新研究模式。

结项摘要

本项目针对纳米载体相关特性对其穿透屏障能力和生物效应的影响缺乏系统研究的关键科学问题,构建一系列具有良好生物相容性和稳定性的模型纳米载体(以金颗粒为核心的具有不同粒径、表面电荷、表面状态的金纳米颗粒),成功建立大鼠脑脊液实时收集动物模型。利用该模型,研究不同尺寸(15nm, 50 nm, 100 nm)对于血脑脊液屏障通透性的影响,筛选出纳米颗粒透过血脑脊液屏障的最优粒径为50 nm,并利用生物电镜技术探索纳米载体通过此屏障的可能机制,认为金纳米颗粒主要是通过纤毛进入脑脊液,从而透过血脑脊液屏障;同时开展了金纳米颗粒对脑部的生物效应基础研究,为纳米载体在脑部药物递送领域的关键技术地位提供理论基础。同时,本项目作为一个基础研究平台能够帮助解决有效但无法穿越血脑脊液屏障的药物递送问题以及为未来脑部纳米载体的成药性基础规律提供积极探索。

项目成果

期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Proton-driven transformable nanovaccine for cancer immunotherapy
用于癌症免疫治疗的质子驱动可转化纳米疫苗
  • DOI:
    10.1038/s41565-020-00782-3
  • 发表时间:
    2020-12
  • 期刊:
    Nature nanotechnology
  • 影响因子:
    38.3
  • 作者:
    Gong N;Zhang Y;Teng X;Wang Y;Huo S;Qing G;Ni Q;Li X;Wang J;Ye X;Zhang T;Chen S;Wang Y;Yu J;Wang PC;Gan Y;Zhang J;Mitchell MJ;Li J;Liang XJ
  • 通讯作者:
    Liang XJ
Ferrimagnetic Vortex Nanoring-Mediated Mild Magnetic Hyperthermia Imparts Potent Immunological Effect for Treating Cancer Metastasis
亚铁磁涡纳米环介导的温和磁热疗法赋予治疗癌症转移的有效免疫作用
  • DOI:
    --
  • 发表时间:
    2019
  • 期刊:
    Acs Nano
  • 影响因子:
    --
  • 作者:
    Xiaoli Liu;Jianjun Zheng;Wei Sun;Xiao Zhao;Yao Li;Ningqiang Gong;Yanyun Wang;Xiaowei Ma;Tingbin Zhang;Ling-Yun Zhao;Yayi Hou;Zhibing Wu;Yang Du;Haiming Fan;Jie Tian;Xing-Jie Liang
  • 通讯作者:
    Xing-Jie Liang
Secreted Protein Acidic and Rich in Cysteine Mediated Biomimetic Delivery of Methotrexate by Albumin-Based Nanomedicines for Rheumatoid Arthritis Therapy
富含半胱氨酸的酸性分泌蛋白介导的基于白蛋白的纳米药物仿生递送甲氨蝶呤用于类风湿关节炎治疗
  • DOI:
    --
  • 发表时间:
    2019
  • 期刊:
    Acs Nano
  • 影响因子:
    --
  • 作者:
    Lu Liu;Fanlei Hu;Hui Wang;Xiaoli Wu;Ahmed Shaker Eltahan;Stephanie Stanford;Nunzio Bottini;Haihua Xiao;Massimo Bottini;Weisheng Guo;Xing-Jie Liang
  • 通讯作者:
    Xing-Jie Liang
Electromagnetic Field-Programmed Magnetic Vortex Nanodelivery System for Efficacious Cancer Therapy
用于有效癌症治疗的电磁场编程磁涡纳米递送系统
  • DOI:
    --
  • 发表时间:
    2021
  • 期刊:
    Advanced Science
  • 影响因子:
    15.1
  • 作者:
    Xiaoli Liu;Yifan Zhang;Yu Guo;Wangbo Jiao;Xiao Gao;Wee Siang Vincent Lee;Yanyun Wang;Xia Deng;Yuan He;Ju Jiao;Ce Zhang;Guoqing Hu;Xing-Jie Liang;Haiming Fan
  • 通讯作者:
    Haiming Fan
Regulation of Ca2+ Signaling for Drug-Resistant Breast Cancer Therapy with Mesoporous Silica Nanocapsules Encapsulated Doxorubicin/siRNA Cocktail
介孔二氧化硅纳米胶囊封装的阿霉素/siRNA 混合物对耐药乳腺癌治疗中 Ca2 信号传导的调节
  • DOI:
    --
  • 发表时间:
    2018
  • 期刊:
    ACS NANO
  • 影响因子:
    --
  • 作者:
    Shu Wang;Xi Liu;Shizhu Chen;Zhirong Liu;Xiaodi Zhang;Xing-Jie Liang;Linlin Li
  • 通讯作者:
    Linlin Li

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

基于介孔二氧化硅的多功能纳米药物输送体系研究进展
  • DOI:
    --
  • 发表时间:
    2013
  • 期刊:
    生物化学与生物物理进展
  • 影响因子:
    --
  • 作者:
    刘小龙;梁兴杰;贾光;张金超
  • 通讯作者:
    张金超
基于介孔二氧化硅的多功能纳米药物输送体系研究进展
  • DOI:
    --
  • 发表时间:
    2013
  • 期刊:
    生物化学与生物物理进展
  • 影响因子:
    --
  • 作者:
    刘小龙;梁兴杰;贾光;张金超
  • 通讯作者:
    张金超
Biological Effects of Nanomaterials and Drugs Measured by the Small-animal SPECT/CT Imaging System IN VIVO
小动物 SPECT/CT 成像系统体内测量纳米材料和药物的生物学效应
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
    Acta Biophysica Sinica
  • 影响因子:
    --
  • 作者:
    马会利;王秩秋;钱锋;梁兴杰
  • 通讯作者:
    梁兴杰
Human Elongation Factor 4 Regulates Cancer Bioenergetics by Acting as a Mitochondrial Translation Switch
人类伸长因子 4 通过充当线粒体翻译开关来调节癌症生物能量学
  • DOI:
    doi:10.1158/0008-5472.can-17-2059
  • 发表时间:
    2018
  • 期刊:
    Cancer Research
  • 影响因子:
    11.2
  • 作者:
    朱萍;刘永章;张凤林;白秀峰;陈子雷;上官福根;张波;张凌云;陈茜茜;谢德耀;兰林华;薛向东;梁兴杰;吕斌;卫涛涛;秦燕
  • 通讯作者:
    秦燕
Y2O3 Nanoparticles Caused Bone Tissue Damage by Breaking the Intracellular Phosphate Balance in Bone Marrow Stromal Cells
Y2O3 纳米颗粒通过破坏骨髓基质细胞的细胞内磷酸盐平衡引起骨组织损伤
  • DOI:
    10.1021/acsnano.8b06211
  • 发表时间:
    2019
  • 期刊:
    ACS Nano
  • 影响因子:
    17.1
  • 作者:
    高春月;靳祎;贾光;索晓敏;刘会芳;刘丹丹;杨新健;葛昆;梁兴杰;王书香;张金超
  • 通讯作者:
    张金超

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

梁兴杰的其他基金

利用水凝胶纳米载体调控肿瘤微环境的基质黏弹性硬度增强淋巴免疫的机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    301 万元
  • 项目类别:
    重点项目
利用黑色素荷瘤小鼠研究富勒烯纳米颗粒对肿瘤免疫逃逸的调控机制
  • 批准号:
    81171455
  • 批准年份:
    2011
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
利用浸润性淋巴细胞研究富勒醇纳米颗粒对肿瘤生长的免疫抑制作用
  • 批准号:
    30970784
  • 批准年份:
    2009
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码