离散线性哈密顿系统亏指数的研究

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    11226160
  • 项目类别:
    数学天元基金项目
  • 资助金额:
    3.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    A0303.动力系统与遍历论
  • 结题年份:
    2013
  • 批准年份:
    2012
  • 项目状态:
    已结题
  • 起止时间:
    2013-01-01 至2013-12-31

项目摘要

This project is concerned with the positive and negative defect indices of discrete linear Hamiltonian systems, which contains mainly criteria of the limit cases( including limit point case, limit circle case and limit middle case) for formally self-adjoint difference equations with real coefficients; criteria of equality of the positive and negative defect indices, the value range of the positive and negative defect indices for formally self-adjoint difference equations with complex coefficients and discrete linear Hamiltonian systems. Since the minimal operator generated by discrete linear Hamiltonian systems may be non-densely defined and multi-valued,even if the corresponding definiteness condition is satisfied, we will define and study the positive and negative defect indices using subspace theory. The solution of these problems is the premise and foundation of the study on self-adjoint extensions and distribution of spectrum of discrete linear Hamiltonian system as well as dynamic systems on time scales.
本项目研究离散线性哈密顿系统的正负亏指数,主要包括实系数形式自伴差分方程极限型(包括极限点型、极限圆型和中间型)的判定、复系数形式自伴差分方程正负亏指数相等的判定、正负亏指数的取值范围,还有离散线性哈密顿系统正负亏指数相等的判定、取值范围等。由于即使确定性条件成立,由离散线性哈密顿系统生成的最小算子可以是不稠定的和多值的,所以本项目将利用子空间的理论定义离散线性哈密顿系统的亏指数并研究其取值范围。这些问题的解决是研究离散线性哈密顿系统以及时间尺度上的动力系统自伴扩张和谱分布的理论前提和基础。

结项摘要

本项目计划研究离散线性哈密顿系统的亏指数,主要包括离散哈密顿系统(包括实系数和复系数形式自伴差分方程)亏指数的取值情况,极限点型、极限圆型和中间型的判定,以及和亏指数相关的问题的研究。本项目通过一年的研究,已完成计划内容。主要研究成果如下:(一)首先研究了二阶实系数形式自伴差分算式的亏指数与其平方对应的四阶差分算式的亏指数之间的关系。证明了二阶实系数形式自伴差分算式的平方是极限圆型当且仅当该二阶差分算式是极限圆型。 这说明当二阶差分算式是极限点型时,其平方只可能是极限点型和中间型。当该二阶差分算式是极限点型时,给出了其平方是极限点型和中间型的充分必要条件。(二)将上述结果推广,讨论任意形式自伴差分算式(实系数或复系数)的亏指数与其复系数多项式对应的差分算式的亏指数之间的关系。(三)研究了一类J自伴离散哈密顿系统(包括二阶J自伴差分方程)对应的最小子空间的自伴扩张问题。利用线性无关平方可和解给出了其J自伴扩张的全部刻画。(四)研究离散哈密顿系统生成的最小子空间的定义域的稠性质。证明了由离散线性哈密顿系统生成的最小子空间是稠定的充分必要条件是最大子空间是单值的,并且证明当至少有一个区间端点是有限时,最小子空间的定义域一定是不稠的,并且最大子空间一定是多值的。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
J-self-adjoint extensions for discrete linear Hamiltonian systems
离散线性哈密顿系统的 J-自伴随扩展
  • DOI:
    --
  • 发表时间:
    2013
  • 期刊:
    Abstract and Applied Analysis
  • 影响因子:
    --
  • 作者:
    Guojing Ren;Huaqing Sun
  • 通讯作者:
    Huaqing Sun
Error estimate of eigenvalues of perturbed higher-order discrete vector boundary value problems
扰动高阶离散向量边值问题特征值的误差估计
  • DOI:
    --
  • 发表时间:
    2014
  • 期刊:
    Abstract and Applied Analysis
  • 影响因子:
    --
  • 作者:
    Haiyan Lv;Yuming Shi;Guojing Ren
  • 通讯作者:
    Guojing Ren

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

br class=MsoNormal / span class=miiJ/i/spanspan class=title-self-adjoint extensions for second-order linear difference equations with complex coefficients./span
具有复系数的二阶线性差分方程的 J 自伴随扩展。
  • DOI:
    --
  • 发表时间:
    2013
  • 期刊:
    Adv. Differ. Equ.
  • 影响因子:
    --
  • 作者:
    孙华清;任国静
  • 通讯作者:
    任国静
Self-adjoint extensions for discrete linear Hamiltonian systems
离散线性哈密顿系统的自伴扩张
  • DOI:
    10.1016/j.laa.2014.04.016
  • 发表时间:
    2014-08
  • 期刊:
    Linear Algebra and Its Applications
  • 影响因子:
    1.1
  • 作者:
    任国静;史玉明
  • 通讯作者:
    史玉明
J-self-adjoint extensions for a class of discrete linear Hamiltonian systems
一类离散线性哈密顿系统的 J-自伴扩张
  • DOI:
    --
  • 发表时间:
    2013
  • 期刊:
    Abstract and Applied Analysis
  • 影响因子:
    --
  • 作者:
    任国静;孙华清
  • 通讯作者:
    孙华清

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

任国静的其他基金

奇异离散线性哈密顿系统的谱分析
  • 批准号:
    11301304
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码