靶标诱导的核酸适配体链构象转变的计算机模拟研究

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    21704064
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    23.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    B0309.高分子物理与高分子物理化学
  • 结题年份:
    2020
  • 批准年份:
    2017
  • 项目状态:
    已结题
  • 起止时间:
    2018-01-01 至2020-12-31

项目摘要

Aptamers are short, single stranded oligonucleotides that bind potently and selectively to their targets by adopting distinct secondary and tertiary structures. The ligand-induced conformational transition of aptamer is the key to understanding the molecular recognition mechanism. Although many experimental and computational research have been performed, how the sequence and chemical composition of the nucleic acid and the solution environment including ions type and salt concentration alter the conformational transition of nucleic acid are still far from fully understood. In our previous research, we proposed a computational approach SELEX in silico to search the sequence space for potent aptamers. We successfully applied SELEX in silico on theophylline-binding RNA aptamer and L-argininamide-binding DNA aptamer, identified several novel aptamers with better ligand-binding affinity, which were published at J. Chem. Theory Comput (2015) and J. Phys. Chem. Lett (2017), respectively. In this proposal, we are attempting to study the conformational transition of nucleic acid aptamer from two directions: chemical information of nucleic acid aptamer and solution environment including ions type and salt concentration. By combining the molecular simulation approaches such as all-atom/coarse-grained molecular dynamics simulation, Markov State Models, molecular docking, we will construct the aptamer folding-ligand binding free energy landscape. By the integration with previous experimental results, we will probably reveal the molecular mechanism though which the mutation/ions affect the conformational transition of nucleic acid. The experimental technologies like CD/ITC/NMR/ will be used to verify our findings. Based on these research, we will optimize aptamer towards high affinity or specificity and greatly broaden the application of aptamer in real life. Our study will not only shed lights on the molecular recognition mechanism of aptamer, but also deepen the understanding of the physical nature of the ligand-induced conformational transition of nucleic acid.
核酸适配体是一类能高亲和、强特异地识别靶标的短链DNA或RNA。作为一种特殊的高分子链,核酸适配体在靶标诱导下发生的链构象转变是其靶标识别的核心部分,是其化学生物学传感器构建的基础,但相关研究较少,其物理本质不明确。申请人关注核酸适配体的分子识别机制,前期采用分子模拟研究适配体的序列-结构-功能关系,相关成果发表在JPCL和JCTC等。本申请拟以链构象转变为核心,从核酸适配体的碱基序列、溶液离子及其浓度两个方向研究靶标诱导的核酸链构象转变过程中各类化学基团和各类相互作用的贡献。通过分子动力学、马尔科夫状态模型、分子对接等建立核酸适配体的折叠-结合自由能面,理解碱基突变、金属离子影响其链构象转变的作用机制,进行核酸适配体序列优化设计并使用CD/ITC/NMR等实验验证。本研究中阐明的核酸适配体链构象变化过程及其影响因素将有助于理解核酸适配体的分子识别机制,加深核酸链构象变化的物理本质理解。

结项摘要

核酸适配体是一类能高亲和、强特异地识别靶标的短链DNA或RNA,靶标诱导的核酸适配体链构象转变是其靶标识别的核心。本项目围绕链构象转变,从核酸适配体的靶标识别及其影响因素和精确描述链构象变化的计算工具开发两个方向展开研究。我们采用分子动力学、马尔科夫状态模型、分子对接和残基作用网络等工具实现了对以核酸适配体为代表的生物大分子构象变化的精准描述,揭示靶标结合、金属离子、突变等调控核酸适配体链构象变化的机制,实现了计算驱动的核酸适配体新靶标发现,丰富了人们对核酸适配体靶标特异性的认识。我们提出残基接触打分以精确描述残基间的接触强度,从而实现对微观构象变化的精细表征,并将其成功应用在核酸适配体、G蛋白偶联受体等生物大分子,阐述了这些生物大分子的构象受配体结合或突变调控而影响其功能的具体机制,为深入理解生物大分子的构象变化及其功能关联机制和药物设计提供了重要的研究基础。本研究按照申报书原定计划开展并顺利实施,取得了预期研究成果。项目在执行期间共合作培养博士2名,硕士1名,博士后1名。发表标注本基金资助的学术论文8篇,其中项目负责人以第一作者或共同第一作者在Elife、Cell Research、Nature Communication、Journal of Medicinal Chemistry、Signal Transduction and Targeted Therapy等知名期刊发表论文6篇。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural basis for activation of the growth hormone-releasing hormone receptor
生长激素释放激素受体激活的结构基础
  • DOI:
    10.1038/s41467-017-02385-4
  • 发表时间:
    2020
  • 期刊:
    Nature Communications
  • 影响因子:
    16.6
  • 作者:
    Zhou Fulai;Zhang Huibing;Cong Zhaotong;Zhao Li-Hua;Zhou Qingtong;Mao Chunyou;Cheng Xi;Shen Dan-Dan;Cai Xiaoqing;Ma Cheng;Wang Yuzhe;Dai Antao;Zhou Yan;Sun Wen;Zhao Fenghui;Zhao Suwen;Jiang Hualiang;Jiang Yi;Yang Dehua;Xu H. Eric;Zhang Yan;Wang Ming-Wei
  • 通讯作者:
    Wang Ming-Wei
G protein-coupled receptors: structure- and function-based drug discovery
G 蛋白偶联受体:基于结构和功能的药物发现
  • DOI:
    10.1038/s41392-020-00435-w
  • 发表时间:
    2021
  • 期刊:
    Signal Transduction and Targeted Therapy
  • 影响因子:
    39.3
  • 作者:
    Yang Dehua;Zhou Qingtong;Labroska Viktorija;Qin Shanshan;Darbalaei Sanaz;Wu Yiran;Yuliantie Elita;Xie Linshan;Tao Houchao;Cheng Jianjun;Liu Qing;Zhao Suwen;Shui Wenqing;Jiang Yi;Wang Ming-Wei
  • 通讯作者:
    Wang Ming-Wei
Identification of a Small Probe That Can Be Conjugated to Proteins by Proximity Labeling
通过邻近标记鉴定可与蛋白质缀合的小探针
  • DOI:
    10.1021/acschembio.9b00842
  • 发表时间:
    2020
  • 期刊:
    ACS Chemical Biology
  • 影响因子:
    4
  • 作者:
    Sun Weiping;Huo Yinbo;Mei Yuxuan;Zhou Qingtong;Zhao Suwen;Zhuang Min
  • 通讯作者:
    Zhuang Min
An in vitro Fo''rster resonance energy transfer-based high-throughput screening assay identifies inhibitors of SUMOylation E2 Ubc9
  • DOI:
    10.1038/s41401-020-0405-7
  • 发表时间:
    2020
  • 期刊:
    Acta Pharmacologica Sinica
  • 影响因子:
    8.2
  • 作者:
    Wang Yu-zhe;Liu Xiao;Way George;Madarha Vipul;Zhou Qingtong;Yang De-hua;Liao Jia-yu;Wang Ming-wei
  • 通讯作者:
    Wang Ming-wei
Common activation mechanism of class a GPCRs
A类GPCR的常见激活机制
  • DOI:
    10.7554/elife.50279
  • 发表时间:
    2019
  • 期刊:
    eLife
  • 影响因子:
    7.7
  • 作者:
    Zhou Qingtong;Yang Dehua;Wu Meng;Guo Yu;Guo Wanjing;Zhong Li;Cai Xiaoqing;Dai Antao;Jang Wonjo;Shakhnovich Eugene;Liu Zhi-Jie;Stevens Raymond C;Lambert Nevin A;Babu M Madan;Wang Ming-Wei;Zhao Suwen
  • 通讯作者:
    Zhao Suwen

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码