有抗肿瘤和抗炎双重活性的p97/VCP抑制剂研究

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    81703332
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    21.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    H3401.合成药物化学
  • 结题年份:
    2020
  • 批准年份:
    2017
  • 项目状态:
    已结题
  • 起止时间:
    2018-01-01 至2020-12-31

项目摘要

Cancer is a leading cause of death with high morbidity and mortality. Inflammation has emerged as a major factor promoting cancer development.Finding a new target for chemotherapy drugs with dual antitumor and antiinflammation effect is a fundamental step in the path to curing cancer. The ubiquitin-proteasome system (UPS) degrade 80-90% of intracellular proteins. Cancer and inflammation cells exploit these protein degradation processes to increased their own growth and decrease apoptotic activity. The p97 AAA [ATPase associated with diverse cellular activities; also called VCP (valosin-containing protein)] participates in key steps in ubiquitin-dependent protein quality control, autophagy, membrane remodeling, and numerous other important cellular functions. p97 directs proteins to the UPS degradation systems. p97 is also an interesting target for cancer and inflammation therapeutics because it is known to be overproduced in multiple cancers, suggesting that its activity may be rate-limiting for the development of at least some types of cancer. Based on studies of p97 biology, we sought to identify small molecule inhibitors of p97. Our major hypothesis is that p97 inhibitors can control UPS processes, and that p97 is a molecular target for cancer therapy. Using high-throughput screening(HTS) and in vivo and in vitro antitumor and antiinflammation activitiy evaluation, we found 16 β-carboline derivatives PZL 6a-p. Our preliminary data show that among these 16 compounds, PZL-6p is a novel p97 inhibitor. Furthermore, normal human liver cell viabilities are unaffected by PZL- . In order to simplify structures for these lead compounds, we designed 40 compounds divided into two groups, PZZ-I and PZZ-II. We plan to synthesize and evaluate the activities of these compounds, including antitumor and antiinflammation activities in vivo and in vitro, inhibition of p97, interference mechanisms in the UPS pathways., acute toxicity and pharmacokinetics preliminary investigation and SAR analysis.Through this project, we will be able to establish a virtual screening model for p97 and its inhibitors and explore p97-linked anti-tumor and antiinflammation mechanisms of inhibiting the UPS system. The results are expected to help establish p97 inhibitors as potential agents for the treatment of tumors.
肿瘤是发病率和死亡率高的常见病。并发炎症可加重肿瘤对患者的危害。p97蛋白可调控泛素-蛋白酶体降解通路降解肿瘤和炎症相关蛋白。据此,申请人假设 p97抑制剂可同时抗肿瘤和抗炎,用前期研究检验了假设的科学性。即通过高通量筛选、抗肿瘤活性评价、抗炎活性评价及分子对接,确认了新先导结构PZL-6p是p97抑制剂,可同时抗肿瘤和抗炎。通过分子对接,申请人进一步确认PZL-6p结构修饰的PZZ-Ⅰ和PZZ-Ⅱ两系列共40种化合物的优越性。本项目拟合成这40种化合物、在细胞和动物水平评价抗肿瘤活性,在动物水平评价抗炎活性、检测对炎症因子和p97 ATP酶活性的抑制作用、模拟与p97活性位点的结合模式、分析构效关系、发现具有抗肿瘤和抗炎双重疗效的安全的p97抑制剂。实施本项目可阐明以抑制p97活性为关联机制,发现具有抗肿瘤和抗炎双重疗效的先导化合物,进而为临床治疗并发炎症的肿瘤患者提供候选药物。

结项摘要

项目背景:慢性炎症是诱发恶性肿瘤的危险因素。恶性肿瘤微环境中的炎性反应、炎性细胞和炎症因子也在癌前病变、原位癌及浸润癌等不同阶段发挥作用。泛素-蛋白酶体通路(UPS)是生物体选择性降解蛋白质的主要途径,参与细胞内80%以上蛋白质的降解。肿瘤和炎症的发病离不开超负荷或异常的蛋白质降解。通过降解特定蛋白质,可以为肿瘤细胞自身生存提供必需的营养或者激活炎性因子,使这一降解通路丧失降解蛋白质的能力,为肿瘤和炎症的治疗提供了新途径。p97又名VCP(缬酪肽蛋白),是一种ATP酶,是多泛素链上的标记因子,陪伴蛋白质从内质网到细胞质中被蛋白酶体降解,抑制p97功能可能产生抗肿瘤和抗炎双重作用。发现新型的p97抑制剂是本项目的基本目标。主要内容:依据前期研究,根据第一代p97抑制剂的构效关系,提取药效基团,优化结构,设计了2个系列40个化合物,并完成了药物合成、纯化、结构鉴定、药效学评价以及分子水平机理研究等工作,最终推出以p97蛋白为靶,具有抗肿瘤和抗炎双重疗效的新型p97抑制剂。P1-A3,P1-E7,P2-B2,P2-H7,P3-A6,P3-F7 6种目标化合物抑制p97的IC50值0.06-12.2 μM;抑制UbG76V-GFP降解的IC50值为1.3-14.3 μM;抗5株肿瘤细胞增殖IC50值1.03–9.56 μM,且对正常细胞有选择性;A549细胞迁移抑制率59.8-15.1 %,侵袭抑制率53.8–34.8 %以及粘附抑制率70.6-45.1 %,与阳性对照药RGDS水平相当;对于C57BL/6小鼠A549荷瘤原位瘤抑制率为42.9-64.3 %;对二甲苯诱导小鼠耳肿胀抑制率39.2-55.9 %。科学意义:获得以p97为靶点具有抗肿瘤和抗炎双重疗效的候选化合物,为p97抑制剂的研发提供理论和实验基础。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(6)
Base-Mediated [3+4]-Cycloaddition of Anthranils with Azaoxyallyl Cations: A New Approach to Multisubstituted Benzodiazepines
碱介导的邻氨基苯甲醚与氮杂烯丙基阳离子的 [3 4]-环加成:多取代苯二氮卓类药物的新方法
  • DOI:
    10.1021/acs.orglett.9b02118
  • 发表时间:
    2019-08-16
  • 期刊:
    ORGANIC LETTERS
  • 影响因子:
    5.2
  • 作者:
    Feng, Juan;Zhou, Meng;Zhao, Ming
  • 通讯作者:
    Zhao, Ming
BCESA: a nano-scaled intercalator capable of targeting tumor tissue and releasing anti-tumoral beta-carboline-3-carboxylic acid
BCESA:一种纳米级嵌入剂,能够靶向肿瘤组织并释放抗肿瘤β-咔啉-3-羧酸
  • DOI:
    10.2147/ijn.s187600
  • 发表时间:
    2019
  • 期刊:
    International Journal of Nanomedicine
  • 影响因子:
    8
  • 作者:
    Jianhui Wu;Yue Cui;Xiaoyi Zhang;Lin Gui;Yaonan Wang;Shiqi Peng;Ming Zhao
  • 通讯作者:
    Ming Zhao
Modifying ICCA with Trp-Phe-Phe to Enhance in vivo Activity and Form Nano-Medicine
Trp-Phe-Phe修饰ICCA增强体内活性形成纳米药物
  • DOI:
    10.2147/ijn.s229856
  • 发表时间:
    2020-01
  • 期刊:
    International Journal of Nanomedicine
  • 影响因子:
    8
  • 作者:
    Zhang Xiaoyi;Zhang Yixin;Wang Yaonan;Wu Jianhui;Chen Haiyan;Zhao Ming;Peng Shiqi
  • 通讯作者:
    Peng Shiqi
RGDV-modified gemcitabine: a nano-medicine capable of prolonging half-life, overcoming resistance and eliminating bone marrow toxicity of gemcitabine
RGDV修饰的吉西他滨:一种延长半衰期、克服耐药性、消除吉西他滨骨髓毒性的纳米药物
  • DOI:
    10.2147/ijn.s212978
  • 发表时间:
    2019-01-01
  • 期刊:
    INTERNATIONAL JOURNAL OF NANOMEDICINE
  • 影响因子:
    8
  • 作者:
    Liu,Wenchao;Mao,Yujia;Zhao,Ming
  • 通讯作者:
    Zhao,Ming
Design and development of ICCA as a dual inhibitor of GPIIb/IIIa and P-selectin receptors.
ICCA作为GPIIb/IIIa和P-选择素受体双重抑制剂的设计和开发
  • DOI:
    10.2147/dddt.s169238
  • 发表时间:
    2018
  • 期刊:
    Drug design, development and therapy
  • 影响因子:
    --
  • 作者:
    Chen H;Lu A;Zhang X;Gui L;Wang Y;Wu J;Feng H;Peng S;Zhao M
  • 通讯作者:
    Zhao M

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码