The traditional constitutive material models used in machining numerical simulations ignore the effect of the microstructure evolution on the flow stress and result in less accurate cutting models. The project proposes a thermo-mechanical-microstructure constitutive model for a high-strength βtitanium alloy and apply the model to multi-scale modelling of the machining process. The microstructure evolution on the surface, as well as the relationship between the microstructure and flow stress, will be discussed in depth. The specific research points are: (1) characterize the microstructure evolution in both the saw-tooth chip and machined surface and identify how the microstructure evolves under different machining parameters; (2) establish the thermo-mechanical-microstructure constitutive model and determine the model parameters by using the quantitative microstructure results and dynamic compression experiments; (3) develop a multi-scale machining model with CA and FE in order to discover the mechanism of the saw-tooth chip and white layer formation and predict the grain size, microhardness, cutting forces and temperature.This research improves the precision and accuracy of numerical simulation and offers a solid fundamental for optimization of the machining process of high-strength titanium alloys.
在切削仿真过程中传统本构模型往往忽略微组织变化对流变应力的影响,降低切削仿真精度。本项目以高强度β钛合金为研究对象,通过定量表征β钛合金切削微组织结构,构建热-力-微组织耦合本构模型并应用于β钛合金多尺度切削建模,揭示微组织演变对流变应力作用机理,阐明加工表面微组织演变规律,实现高强度β钛合金切削加工过程的准确预测。主要研究内容包括:定量表征锯齿切屑和加工表面微组织结构参数,分析不同切削工艺参数下微组织变化规律;结合孪生动力学、再结晶动力学和位错演化机制,构建耦合本构模型,评估应变硬化、应变率硬化、热软化和微组织作用耦合效应下的流变应力行为;耦合有限元和元胞自动机,建立多尺度切削仿真模型,研究锯齿切屑和加工表面微组织演变规律,准确预测高强度β钛合金切削加工中的晶粒大小、显微硬度、切削力和温度等。项目研究成果有助于提高β钛合金切削仿真精度,为高强度金属材料的加工与仿真提供技术与理论支撑。
为了描述热软化和再结晶效应对材料流动应力的影响,本项目确定了适用于β钛合金Ti5Al5Mo5V3Cr(Ti5553)切削过程的唯象本构模型(TANH)。该模型是基于Johnson-Cook(JC)模型提出的,以确保在大应变下材料软化行为的准确描述,其传统JC部分的参数通过SHPB实验得到不同温度、应变率下的应力-应变曲线进行平均拟合得到,双曲正切函数部分、修改应变强化项的参数通过一种基于有限元模拟的反演方法进行了确定,参数识别过程以最小化切削力仿真误差为目标。使用JC模型和TANH模型对不同工况下的车削过程进行了模拟,分别将它们的预测切削力与实验切削力进行对比,揭示锯齿切屑和加工表面温度、应力及应变变化规律。结果表明,相比于传统JC模型,TANH模型能够更准确地预测Ti5553在加工过程中的切削力,也反映出它能准确描述Ti5553钛合金在加工过程中的流动应力演变。