半导体物理中的若干量子宏观模型
项目介绍
AI项目解读
基本信息
- 批准号:11101049
- 项目类别:青年科学基金项目
- 资助金额:22.0万
- 负责人:
- 依托单位:
- 学科分类:A0306.混合型、退化型偏微分方程
- 结题年份:2014
- 批准年份:2011
- 项目状态:已结题
- 起止时间:2012-01-01 至2014-12-31
- 项目参与者:仝辉; 刘立才;
- 关键词:
项目摘要
本项目拟研究半导体物理学中产生的若干具有量子效应的宏观模型。由于与半导体器件的描述紧密相关,这几类模型具有很强的应用背景和重要的理论意义,近年来受到了国内外数学家与物理学家的广泛关注。从数学上看,这几类量子宏观模型都是含有高阶退化非线性抛物方程的方程组。与经典的流体动力学方程组相比,量子修正项(即高阶项)使方程组的数学结构发生了根本性的改变。由于基于极值原理的一系列方法不再适用,给问题的研究带来了挑战,目前还没有形成一套成熟的理论方法。尤其对于量子能量-输运模型,缺少对温度变量的适当先验估计;而对于量子Navier-Stokes模型,存在多个类型方程的耦合作用。因此对这两类模型的研究难度更大,研究结果非常少。我们将主要研究量子Navier-Stokes模型的半经典极限和粘性消失极限;一类简化量子能量-输运模型的半经典极限和松弛时间极限;高维六阶量子漂流-扩散模型的大初值整体解和半经典极限。
结项摘要
量子能量-输运模型是最难的一类量子宏观模型,用于描述半导物理中产生的量子效应。通过建立对Planck常数的先验估计,我们得到了一类简化量子能量-输运模型的半经典极限。Aubin-Lions引理是对发展型偏微分方程进行紧性讨论的基本工具之一。我们给出了两个时空Lp空间中带有时间平移假设的非线性紧性定理,这是对Aubin-Lions-Simon引理的非线性推广;近而通过引入新的证明思想,去掉了Aubin-Lions(-Dubinskii)引理中一个基本的空间嵌入条件,并且给出应用。FENE-型和胡克-型聚合物流体模型,杆状细菌在溶液中游动的Doi-Saintillan-Shelley模型,胶体杆状沉积物动力学模型都是由描述宏观流体的Navier-Stokes方程和描述微观颗粒的Fokker-Planck方程耦合而成的方程组,近年来受到广泛关注。我们系统地探讨了这四类模型整体解的存在性或唯一性。此外,讨论了分别源于Hookean和FENE相对熵估计的全空间上和单位球上权空间的一系列连续和紧嵌入定理。这些嵌入结果的条件大部分是最优的;而且不依赖于空间维数。Navier-Stokes–Maxwell-Stefan方程组是刻画多组分化学反应扩散的经典模型,在化学工程中已经得到了广泛应用,我们建立了一类不可压简化情形下模型整体弱解的存在性和指数衰减到平衡态的性质,证明了Temam等人于1995年宣布但当时未证明的结果。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Semiclassical limit in a simplified quantum energy-transport model for semiconductors
半导体简化量子能量传输模型的半经典极限
- DOI:--
- 发表时间:--
- 期刊:Kinetic and Related Models
- 影响因子:1
- 作者:A. Jungel;L. Chen;X. Chen
- 通讯作者:X. Chen
span /span br class=MsoNormal / spanspanemspan style=color:#333333;font-style:normal;A note on Aubin-Lions-Dubinskii lemmas/span/emispan style=
关于 Aubin-Lions-Dubinskii 引理的注释
- DOI:--
- 发表时间:2014
- 期刊:Acta Applicandae Mathematicae
- 影响因子:1.6
- 作者:Xiuqing Chen;Ansgar Juengel;Jian-Guo Liu
- 通讯作者:Jian-Guo Liu
Two nonlinear compactness theorems in L-p(0, T; B)
L-p(0, T; B) 中的两个非线性紧性定理
- DOI:--
- 发表时间:2012
- 期刊:Applied Mathematics Letters
- 影响因子:3.7
- 作者:Xiuqing Chen;Jian-Guo Liu
- 通讯作者:Jian-Guo Liu
span /span br class=MsoNormal / spanspan style=color: rgb(51, 51, 51); font-family: ; Roman?,?serif?;?= New= Times=Existence and uniqueness of global weak
全球弱者的存在性和唯一性
- DOI:--
- 发表时间:2014
- 期刊:Communications in Mathematical Sciences
- 影响因子:1
- 作者:Xiuqing Chen;Xiaolong Li;Jian-Guo Liu
- 通讯作者:Jian-Guo Liu
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--"}}
- 发表时间:{{ item.publish_year || "--" }}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--"}}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ patent.updateTime }}
其他文献
其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--" }}
- 发表时间:{{ item.publish_year || "--"}}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--" }}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}

内容获取失败,请点击重试

查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:
AI项目摘要
AI项目思路
AI技术路线图

请为本次AI项目解读的内容对您的实用性打分
非常不实用
非常实用
1
2
3
4
5
6
7
8
9
10
您认为此功能如何分析更能满足您的需求,请填写您的反馈:
陈秀卿的其他基金
多组分流体中的NS-MS模型和非线性紧性定理
- 批准号:11471050
- 批准年份:2014
- 资助金额:60.0 万元
- 项目类别:面上项目
相似国自然基金
{{ item.name }}
- 批准号:{{ item.ratify_no }}
- 批准年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}
相似海外基金
{{
item.name }}
{{ item.translate_name }}
- 批准号:{{ item.ratify_no }}
- 财政年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}