信号处理中的二次非凸优化问题研究
项目介绍
AI项目解读
基本信息
- 批准号:11871168
- 项目类别:面上项目
- 资助金额:40.0万
- 负责人:
- 依托单位:
- 学科分类:A0405.连续优化
- 结题年份:2022
- 批准年份:2018
- 项目状态:已结题
- 起止时间:2019-01-01 至2022-12-31
- 项目参与者:李浙宁; 文元美; 王丰; 田妮莉; 张小志; 邝伟潮; 周龙涛; 周明康; 陈帆;
- 关键词:
项目摘要
In the past two decades, nonconvex quadratic optimization problems have been extensively employed in signal processing for communications, radar, array signal processing, speech signal processing, medical image signal processing and so on. Due to recent advances in convex optimization theory and interior-point algorithms, polynomial-time algorithms for nonconvex quadratic optimization, including approximate algorithms and exact algorithms, have made huge progress. However, there are still NP-hard quadratic optimization, complexity-unknown optimization which remains to be studied. Since those optimization problems arise in many engineering applications, therefore the study on nonconvex quadratic optimization problems are of great interest. This project focuses on nonconvex quadratic optimization problem with complex-valued decision variables, due to close connection to signal processing. We study global sufficient conditions, efficient approximate algorithms, exact algorithms, equivalent convex characterizations for double-sided nonconvex quadratic optimization, nonconvex separable quadratic optimization, nonconvex fractional quadratic optimization, and robust quadratic optimization, ect. We hope that the study through this project will enrich nonconvex quadratic optimization theory and algorithms, and find more applications in signal processing.
二次非凸优化问题,在过去二十年被广泛地应用于通信信号处理、雷达信号处理、天线阵列信号处理、语音信号处理、医学图像信号处理等领域。伴随着凸优化理论和内点算法的发展,二次非凸优化问题的多项式时间算法,包括全局算法和逼近算法,已经取得很大的进展。但尽管如此,仍然还有不少NP-难二次优化、复杂度未知的二次优化等问题有待于进一步研究,而这些问题通常是源自工程中的实际问题,因此深入研究二次非凸优化问题具有理论与应用意义。本课题与信号处理应用紧密相关,以复数值变量的二次非凸优化问题为研究对象,针对双边约束的二次非凸优化问题、可分二次非凸优化问题、分式二次非凸优化问题、鲁棒二次优化等问题,研究它们全局最优性充分条件、有效逼近算法,全局算法、等价凸表达等内容。以期进一步推动研究二次非凸优化理论与算法,扩展信号处理领域的应用。
结项摘要
二次非凸优化问题,在过去二十年被广泛地应用于无线通信信号处理、雷达信号处理、阵列信号处理、医学图像信号处理等领域。伴随着凸优化理论和内点算法的发展,二次非凸优化问题的多项式时间算法,包括全局算法和逼近算法,已经取得很大的进展。但尽管如此,仍然还有不少NP-难、复杂度未知的二次优化等问题有待于进一步研究。基于此,本项目对信号处理应用中抽象出来的二次非凸优化问题,如双边约束的二次非凸优化问题、可分二次非凸优化问题、残差模极大极小问题、鲁棒二次非凸优化等问题,针对其中尚未解决的问题,进行深入研究,取得相应理论成果,包括它们的全局最优性充分条件、高效逼近算法、全局算法、等价凸表达等等,并扩展它们在无线通信信号处理、天线阵列信号及金融领域中的应用。课题研究的四年期间,发表论文18篇,其中期刊论文12篇(以一作发表在顶刊《IEEE Transactions on Signal Processing》上3篇、《Signal Processing》上2篇),IEEE会议论文6篇,已申请发明专利12项,其中7项完成专利授权,并发表外文专著章节2篇以及中文专著1本,我们发表的论文被SCI论文引用次数为67次,SCI他引次数为57次。
项目成果
期刊论文数量(12)
专著数量(3)
科研奖励数量(0)
会议论文数量(6)
专利数量(12)
New Designs on MVDR Robust Adaptive Beamforming Based on Optimal Steering Vector Estimation
基于最优转向向量估计的MVDR鲁棒自适应波束形成新设计
- DOI:10.1109/tsp.2019.2918997
- 发表时间:2019
- 期刊:IEEE Transactions on Signal Processing
- 影响因子:5.4
- 作者:Yongwei Huang;MingKang Zhou;Sergiy A. Vorobyov
- 通讯作者:Sergiy A. Vorobyov
Enhanced Robust Adaptive Beamforming Designs for General-Rank Signal Model via an Induced Norm of Matrix Errors
通过矩阵误差的诱导范数增强通用秩信号模型的鲁棒自适应波束形成设计
- DOI:10.1016/j.sigpro.2021.108439
- 发表时间:2021
- 期刊:Signal Processing
- 影响因子:4.4
- 作者:Yongwei Huang;Sergiy A. Vorobyov
- 通讯作者:Sergiy A. Vorobyov
Robust Adaptive Beamforming Via Worst-Case SINR Maximization With Nonconvex Uncertainty Sets
通过使用非凸不确定性集实现最坏情况 SINR 最大化的鲁棒自适应波束形成
- DOI:10.1109/tsp.2023.3240312
- 发表时间:2023
- 期刊:IEEE Transactions on Signal Processing
- 影响因子:5.4
- 作者:Yongwei Huang;Hao Fu;Sergiy A. Vorobyov;Zhi-Quan Luo
- 通讯作者:Zhi-Quan Luo
MIMO waveform design for radar and communication integrated system in the presence of active interferences
有源干扰下雷达与通信一体化系统的MIMO波形设计
- DOI:10.1016/j.dsp.2022.103685
- 发表时间:2022
- 期刊:Digital Signal Processing
- 影响因子:2.9
- 作者:Wenhua Wu;Guojun Han;Yunhe Cao;Yongwei Huang
- 通讯作者:Yongwei Huang
Quadratic Matrix Inequality Approach to Robust Adaptive Beamforming for General-Rank Signal Model
通用秩信号模型鲁棒自适应波束形成的二次矩阵不等式方法
- DOI:10.1109/tsp.2020.2981208
- 发表时间:2020
- 期刊:IEEE Transactions on Signal Processing
- 影响因子:5.4
- 作者:Yongwei Huang;Sergiy A. Vorobyov;Zhi-Quan Luo
- 通讯作者:Zhi-Quan Luo
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--"}}
- 发表时间:{{ item.publish_year || "--" }}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--"}}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ patent.updateTime }}
其他文献
取代基对苝酰亚胺衍生物气敏传感性能的影响
- DOI:--
- 发表时间:2012
- 期刊:化学研究
- 影响因子:--
- 作者:黄永伟
- 通讯作者:黄永伟
Generalized cone-subconvexlike set-valued maps and applications to vector optimization
广义锥子凸集值映射及其在矢量优化中的应用
- DOI:--
- 发表时间:2024-09-14
- 期刊:
- 影响因子:--
- 作者:黄永伟;Huang;Yongwei
- 通讯作者:Yongwei
其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--" }}
- 发表时间:{{ item.publish_year || "--"}}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--" }}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}
内容获取失败,请点击重试
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:
AI项目摘要
AI项目思路
AI技术路线图
请为本次AI项目解读的内容对您的实用性打分
非常不实用
非常实用
1
2
3
4
5
6
7
8
9
10
您认为此功能如何分析更能满足您的需求,请填写您的反馈:
相似国自然基金
{{ item.name }}
- 批准号:{{ item.ratify_no }}
- 批准年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}
相似海外基金
{{
item.name }}
{{ item.translate_name }}
- 批准号:{{ item.ratify_no }}
- 财政年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}