选择性转发攻击下的城市小区域车联网级联失效机理及防御策略

项目介绍
AI项目解读

基本信息

  • 批准号:
    61802333
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    22.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    F0208.物联网及其他新型网络
  • 结题年份:
    2021
  • 批准年份:
    2018
  • 项目状态:
    已结题
  • 起止时间:
    2019-01-01 至2021-12-31

项目摘要

The internet of vehicle in small regions of the city has the features of scale-free network, so the intentional attack is the gravest threat to the security of the network. If node failures come from intentional attack based on the feature of degree distribution inhomogeneity, the failure is a kind of dynamic effect of node failure, will instantly spread all over the network, which causing global network paralysis, becoming the application bottleneck in the network. Now, the difficult of selective forward attack detecting and the complexity of cascading failure analyzing, pose a great challenge for internet of vehicle network. Therefore, this project studies the malicious nodes which selectively drop legal data packets from time to time. Using the Gauss distribution and the Bayesian decision to analyze the behavior of packet loss changes, the measurement criteria for the selective forwarding attack node is established. Then the cascading failure effect on the network traffic variation based on generating function method is analyzed, the trigger critical traffic distribution of network large-scale cascading failure under the selective forwarding attack is obtained. Moreover, by introducing the chance of entropy into the construct process of the path traffic allocation model, and using multi-paths that work together to forwarding data packets, the cascading failure defense strategy is further proposed. It reduces the malicious nodes involved in the possibility of forwarding data packets, in the meantime, it ensures the reasonable traffic distribution for each path in the network. Finally, the completion of the project will reveal the cascading failure mechanism under selective forwarding attack for the internet of vehicle in small regions of the city, enrich the cascading failure defense approach, and has an important scientific and practical value in improving the security of the internet of vehicle and implementing the strategy of the “the architecture of Internet of things in the space, the air and the land”.
城市小区域的车联网呈现出无标度网络特征,使得网络安全面临严重威胁,若攻击者结合网络度分布不均匀特征发起攻击,更会造成节点失效的动态效应,导致全局网络瘫痪。目前,选择性转发攻击的隐蔽性和级联失效的复杂性,使得车联网安全研究充满挑战。为此,本项目面向恶意节点丢弃合法数据包的选择性转发攻击,利用高斯分布和贝叶斯判决分析节点丢包行为,建立选择性转发攻击节点的检测标准;基于概率母函数法研究攻击下网络流量变化对级联失效规模影响规律,获取攻击下触发网络大规模级联失效的临界流量分布;引入机会熵构建网络路径流量分配模型,通过多条数据包传送路径的协同工作设计级联失效防御策略,减少恶意节点参与数据包转发的可能性同时保证网络各条路径流量分配的合理性。项目的完成将揭示攻击下城市小区域车联网级联失效机理,丰富级联失效防御方法,对提升车联网安全和贯彻“空天地智慧物联网架构”战略思想具有科学意义和实际价值。

结项摘要

对于城市小区域的车联网,其结构呈现无标度网络特征,在无标度网络中,级联失效问题尤为严重。选择性转发攻击作为一种普遍存在于网络中的攻击方式,网络中恶意节点会有选择地丢弃通过自身的敏感数据,对网络有较大破坏力又有一定隐蔽性。因此,研究选择性转发攻击下城市小区域车联网级联失效机理及防御方法具有重要意义。本项目开展了以下研究:(1)选择性转发攻击节点检测研究,提出选择性转发攻击节点的信任预测模型,提高了攻击行为检测率、降低了误检率;(2)研究攻击下网络级联失效影响规律,提出考虑攻击行为的网络级联失效负载重分配模型,获取了不触发网络大规模级联失效的传播条件;(3)研究网络路径流量优化分配模型,建立基于路径丢包率和路径负载函数的路径信任模型,对网络流量进行了合理分配;(4)研究基于网络路径流量优化的级联失效防御方法,提出基于多项式原理的分布式自适应路由方法,突破了无标度网络不相交路径数量限制,在抵御选择性转发攻击造成有效数据缺失的同时提高了网络抵御级联失效的能力;(5)研究基于网络关键节点资源优化的级联失效防御方法,提出网络风险最小化的防御资源分配方法,进一步增强了网络抵御级联失效关键节点失效的能力。项目研究成果能够为具有无标度特征的城市小区域车联网信息安全传输提供重要理论和技术支撑。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(2)
专利数量(3)
复杂网络的交通拥塞缓解策略研究
  • DOI:
    --
  • 发表时间:
    2020
  • 期刊:
    小型微型计算机系统
  • 影响因子:
    --
  • 作者:
    尹荣荣;王静;刘蕾;邓玉静;赵凝
  • 通讯作者:
    赵凝
Model and Analyze the Cascading Failure of Scale-Free Network Considering the Selective Forwarding Attack
考虑选择性转发攻击的无标度网络级联故障建模与分析
  • DOI:
    10.1109/access.2021.3063928
  • 发表时间:
    2021
  • 期刊:
    IEEE Access
  • 影响因子:
    3.9
  • 作者:
    Rongrong Yin;Huaili Yuan;Huahua Zhu;Xudan Song
  • 通讯作者:
    Xudan Song
Modeling and analyzing cascading dynamics of the urban road traffic network
城市道路交通网络的级联动态建模与分析
  • DOI:
    10.1016/j.physa.2020.125600
  • 发表时间:
    2021-03-15
  • 期刊:
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
  • 影响因子:
    3.3
  • 作者:
    Yin, Rong-Rong;Yuan, Huaili;Liu, Lei
  • 通讯作者:
    Liu, Lei
Node importance evaluation method based on multi-attribute decision-making model in wireless sensor networks
无线传感器网络中基于多属性决策模型的节点重要性评估方法
  • DOI:
    10.1186/s13638-019-1563-5
  • 发表时间:
    2019-12
  • 期刊:
    EURASIP Journal on Wireless Communications and Networking
  • 影响因子:
    2.6
  • 作者:
    Rongrong Yin;Xueliang Yin;Mengdi Cui;Yinghan Xu
  • 通讯作者:
    Yinghan Xu
基于简化云与K/N投票的选择性转发攻击检测方法
  • DOI:
    --
  • 发表时间:
    2020
  • 期刊:
    电子与信息学报
  • 影响因子:
    --
  • 作者:
    尹荣荣;张文元;杨绸绸;李曦达
  • 通讯作者:
    李曦达
共 12 条
  • 1
  • 2
  • 3
前往

正在为您生成内容...