基于SVM卷积神经网络的火灾导线熔痕分类识别技术研究
项目介绍
AI项目解读
基本信息
- 批准号:51801036
- 项目类别:青年科学基金项目
- 资助金额:24.0万
- 负责人:
- 依托单位:
- 学科分类:E0107.金属功能材料
- 结题年份:2021
- 批准年份:2018
- 项目状态:已结题
- 起止时间:2019-01-01 至2021-12-31
- 项目参与者:莫善军; 温丽维; 廖云丹; 屈悦; 彭惠旺;
- 关键词:
项目摘要
At present, most of the electrical fire identification in China is based on experience or semi-empirical. The existing theories and methods can not meet the needs of electrical fire identification.. In this project, based on the analysis of the existing method for cable melted marks identification, the deep learning method based on SVM convolutional neural network is used to construct a system for cable melted marks classification and identifying. This project analyzes in detail the appearance maps, metallographic maps, and the feature composition information in the surface layer of EDS scan maps for cable melted marks, which classifies the above three types of images and calculates the weights of the parameters, and the porosity rate which is obtained in advance and the internal EDS component data are added to the network parameter operation. By using these methods, the reliability of image feature extraction is improved, and a comprehensive criterion is finally formed, so as to achieve the purpose of accurately classifying the sample and identifying the properties of the cable melted marks.
当前我国电气火灾物证鉴定仍多以经验或半经验为主,现有理论和方法已无法很好适应电气火灾物证鉴定需求。. 本项目在分析现有导线熔痕鉴定方法的基础上,利用基于SVM支持向量机卷积神经网络的深度学习处理方法,构建火灾导线熔痕分类识别鉴定系统,深入挖掘导线熔痕的外观形貌图、金相图、表层成分EDS面扫图中的特征信息,并把上述三类图像识别分类和进行参数的权重计算,以及把先期获取的孔洞率和内部EDS成分数据加入网络参数运算,提高图像特征提取的可靠度,最终形成综合判据,从而达到样品准确分类和鉴定熔痕属性的目的。
结项摘要
当前我国电气火灾物证鉴定仍多以经验或半经验为主,现有理论和方法已无法很好适应电气火灾物证鉴定需求。.本项目在分析现有导线熔痕鉴定方法的基础上,利用基于SVM支持向量机卷积神经网络的深度学习处理方法,构建火灾导线熔痕分类识别鉴定系统,提高图像特征提取的可靠度,最终形成综合判据,从而达到样品准确分类和鉴定熔痕属性的目的。. 本项目的主要研究进展如下:. (1)制作了电气火灾导线熔痕的标签数据集;. (2)构建了对电气火灾导线熔痕高效识别分类的SVM-CNN网络系统,并使用Torch机器学习框架和Python语言实现;. (3)开发了一种“SVM特征融合算法”进行特征提取分类,准确率能够在DenseNet121网络预测的基础上再提高3%,并且提高了召回率和f1_score值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--"}}
- 发表时间:{{ item.publish_year || "--" }}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--"}}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ patent.updateTime }}
其他文献
氮化碳对Cu-ZnO-Al_2O_3催化CO_2加氢合成甲醇的影响
- DOI:10.3969/j.issn.1001-8719.2021.03.005
- 发表时间:2021
- 期刊:石油学报. 石油加工
- 影响因子:--
- 作者:张一凡;杨文兵;马清祥;高新华;张建利;李鹏;赵天生;李蓉
- 通讯作者:李蓉
新生水土流失对汶川震区土壤水分入渗的影响
- DOI:--
- 发表时间:2012
- 期刊:中国农业科学
- 影响因子:--
- 作者:胡恒;熊明彪;杨文兵;李振林
- 通讯作者:李振林
其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--" }}
- 发表时间:{{ item.publish_year || "--"}}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--" }}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}
内容获取失败,请点击重试
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:
AI项目摘要
AI项目思路
AI技术路线图
请为本次AI项目解读的内容对您的实用性打分
非常不实用
非常实用
1
2
3
4
5
6
7
8
9
10
您认为此功能如何分析更能满足您的需求,请填写您的反馈:
相似国自然基金
{{ item.name }}
- 批准号:{{ item.ratify_no }}
- 批准年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}
相似海外基金
{{
item.name }}
{{ item.translate_name }}
- 批准号:{{ item.ratify_no }}
- 财政年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}