Statistical Methods to Map Disease Genes in Populations
绘制人群疾病基因图谱的统计方法
基本信息
- 批准号:RGPIN-2018-04296
- 负责人:
- 金额:$ 2.91万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Variation in DNA sequences reflects their relationships. The relationships can tell us about individual predisposition to inherited traits, and so are of use in mapping the genomic location of disease genes. The function of the mapped genes and their biochemical pathways can lead to personalized treatments for disease. The research program focuses on mapping the genomic location of genes that influence disease traits, using data on traits and on genetic variation in homologous DNA sequences. Statistical gene mapping looks for genomic regions with excess relatedness and excess trait similarity. To characterize the relatedness in a sample of DNA sequences, the research program will use their gene genealogy. The gene genealogy is a set of correlated ancestral trees across the genomic region. At trait-influencing locations on the genome, we expect excess clustering of similar trait values on the genealogical tree. Genealogical clustering of trait values is thus a basis for mapping disease genes. A short-term objective is to investigate the statistical properties of different measures of clustering on the genealogy.To cluster trait values on the genealogy, we must reconstruct it, either as a parameter or as a latent random variable. Cladistic methods view the genealogy as a parameter. However, mapping approaches that rely on cladistic reconstructions are potentially biased because they ignore uncertainty in the genealogy. A short-term goal is to characterize the bias and other statistical properties of clustering approaches applied to cladistic reconstructions. Instead of being viewed as parameters, genealogies may be viewed as latent random variables, and sampled from their posterior distribution given the genetic data. However, currently-available, MCMC samplers rely on approximations that break down for a larger number of sequences. A medium-term goal is to develop improved sampling methods with faster mixing, through the use of particle-marginal Metropolis-Hastings algorithms. To reduce the complexity of the state space, we will consider only partial genealogies going back 100 generations before present. Little information about the genomic location of low-frequency causal variants is likely to be gained from going further back in time.In the mapping of disease genes, accurate phenotyping is critical. For brain disorders, 3-dimensional imaging measurements provide objective assessments of cognitive capacity that are thought to be closer to genetic influences than questionnaire scores. Each image typically has millions of measurements, but the information on changes due to disease is thought to reside in only a subset. A second and longer-term focus of the research is to work closely with our brain-imaging collaborators to develop clinically-meaningful measures of trait similarities between individuals that can be integrated into the proposed gene-mapping methods.
DNA序列的变化反映了它们的关系。这些关系可以告诉我们有关遗传性状的个体倾向,因此在映射疾病基因的基因组位置。映射基因及其生化途径的功能可导致个性化疾病治疗。该研究计划着重于绘制影响疾病特征的基因的基因组位置,使用有关性状的数据和同源DNA序列的遗传变异的数据。统计基因映射寻找具有过度相关性和过量性状相似性的基因组区域。为了表征DNA序列样本中的相关性,研究程序将使用其基因家谱。基因家谱是整个基因组区域的一组相关的祖先树。在基因组上的特征影响位置,我们期望家谱树上相似的性状值过多的聚类。因此,性状值的家谱聚类是映射疾病基因的基础。一个短期目标是研究谱系上不同聚类量度的统计特性。要在家谱上的聚类特征值,我们必须将其重建为参数,或作为参数或潜在的随机变量。 Cladistic方法将家谱视为参数。但是,依赖层流重构的映射方法可能存在偏见,因为它们忽略了家谱中的不确定性。一个短期目标是表征应用于移动重建的聚类方法的偏差和其他统计特性。谱系可能被视为潜在的随机变量,而不是被视为参数,并且在遗传数据的情况下从其后分布中取样。但是,当前可用的MCMC采样器依赖于近似序列分解的近似值。一个中期目标是通过使用粒子 - 划分的大都市 - 危机算法来开发更快的混合采样方法。为了降低状态空间的复杂性,我们将仅考虑部分谱系在目前的100代。关于低频因果变体的基因组位置的信息很少,很可能会从及时延续。在疾病基因的映射中,准确的表型至关重要。对于脑部疾病,三维成像测量值提供了对认知能力的客观评估,这些评估被认为比问卷分数更接近遗传影响。每个图像通常都有数百万个测量值,但是有关疾病变化的信息仅存在于子集中。这项研究的第二和长期重点是与我们的大脑成像合作者紧密合作,以开发可将可以集成到建议的基因映射方法中的个体之间的临床性特征相似性的衡量标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Graham, Jinko其他文献
Markov chain Monte Carlo sampling of gene genealogies conditional on unphased SNP genotype data
- DOI:
10.1515/sagmb-2012-0011 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:0.9
- 作者:
Burkett, Kelly M.;McNeney, Brad;Graham, Jinko - 通讯作者:
Graham, Jinko
A data-smoothing approach to explore and test gene-environment interaction in case-parent trios
- DOI:
10.1515/sagmb-2013-0023 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:0.9
- 作者:
Shin, Ji-Hyung;Infante-Rivard, Claire;Graham, Jinko - 通讯作者:
Graham, Jinko
perfectphyloR: An R package for reconstructing perfect phylogenies
- DOI:
10.1186/s12859-019-3313-4 - 发表时间:
2019-12-23 - 期刊:
- 影响因子:3
- 作者:
Karunarathna, Charith B.;Graham, Jinko - 通讯作者:
Graham, Jinko
Simulating pedigrees ascertained for multiple disease-affected relatives
- DOI:
10.1186/s13029-018-0069-6 - 发表时间:
2018-10-15 - 期刊:
- 影响因子:0
- 作者:
Nieuwoudt, Christina;Jones, Samantha J.;Graham, Jinko - 通讯作者:
Graham, Jinko
Cost-effective prediction of gender-labeling errors and estimation of gender-labeling error rates in candidate-gene association studies
- DOI:
10.3389/fgene.2011.00031 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:3.7
- 作者:
Qu, Conghui;Schuetz, Johanna M.;Graham, Jinko - 通讯作者:
Graham, Jinko
Graham, Jinko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Graham, Jinko', 18)}}的其他基金
Statistical Methods to Map Disease Genes in Populations
绘制人群疾病基因图谱的统计方法
- 批准号:
RGPIN-2018-04296 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods to Map Disease Genes in Populations
绘制人群疾病基因图谱的统计方法
- 批准号:
RGPIN-2018-04296 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods to Map Disease Genes in Populations
绘制人群疾病基因图谱的统计方法
- 批准号:
RGPIN-2018-04296 - 财政年份:2019
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods to Map Disease Genes in Populations
绘制人群疾病基因图谱的统计方法
- 批准号:
RGPIN-2018-04296 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
New and efficient approaches to Markov chain Monte Carlo sampling of gene genealogies conditional on observed genetic data
以观察到的遗传数据为条件的基因谱系马尔可夫链蒙特卡罗抽样的新且有效的方法
- 批准号:
222886-2013 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
New and efficient approaches to Markov chain Monte Carlo sampling of gene genealogies conditional on observed genetic data
以观察到的遗传数据为条件的基因谱系马尔可夫链蒙特卡罗抽样的新且有效的方法
- 批准号:
222886-2013 - 财政年份:2016
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
New and efficient approaches to Markov chain Monte Carlo sampling of gene genealogies conditional on observed genetic data
以观察到的遗传数据为条件的基因谱系马尔可夫链蒙特卡罗抽样的新且有效的方法
- 批准号:
222886-2013 - 财政年份:2015
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
New and efficient approaches to Markov chain Monte Carlo sampling of gene genealogies conditional on observed genetic data
以观察到的遗传数据为条件的基因谱系马尔可夫链蒙特卡罗抽样的新且有效的方法
- 批准号:
222886-2013 - 财政年份:2014
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
New and efficient approaches to Markov chain Monte Carlo sampling of gene genealogies conditional on observed genetic data
以观察到的遗传数据为条件的基因谱系马尔可夫链蒙特卡罗抽样的新且有效的方法
- 批准号:
222886-2013 - 财政年份:2013
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Improved statistical methods for identifying generic risk factors underlying complex diseases
改进统计方法来识别复杂疾病的一般危险因素
- 批准号:
222886-2007 - 财政年份:2012
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
地图综合知识支持的线要素智能自适应化简方法研究
- 批准号:42301504
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
危化场景下基于四足机器人的持久性定位与全生命周期地图更新方法研究
- 批准号:42374029
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
从图像到矢量地图的风格迁移方法
- 批准号:42371443
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
智能车定位地图匹配方法中的交叉注意力机制研究
- 批准号:62373250
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
城市遮挡环境下惯性/视觉/高精地图辅助多频多系统PPP快速模糊度固定理论与方法研究
- 批准号:42374016
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
- 批准号:
10568797 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
A kinetic framework to map the genetic determinants of alternative RNA isoform expression
绘制替代 RNA 亚型表达遗传决定因素的动力学框架
- 批准号:
10638072 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Multiscale genome engineering to map cis-regulatory variants in human and mouse
多尺度基因组工程绘制人类和小鼠顺式调控变异图谱
- 批准号:
10737026 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Multi-omics peripheral nerve atlas enables fine-mapping of pain molecular phenotypes
多组学周围神经图谱能够精细绘制疼痛分子表型
- 批准号:
10707409 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Development of Small Area Interactive Risk Maps for Cancer Control Efforts
为癌症控制工作开发小区域交互式风险地图
- 批准号:
10645147 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别: