Topological and critical states of matter in strongly correlated electronic systems

强相关电子系统中物质的拓扑和临界状态

基本信息

  • 批准号:
    RGPIN-2019-04321
  • 负责人:
  • 金额:
    $ 2.84万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Topological and critical states of matter are of fundamental importance and are likely to have a huge impact on the future quantum technology. These novel states of matter are purely quantum and are sharply distinct from conventional states of matter that fall in the classical symmetry breaking paradigm. In recent years, we have witnessed great developments in the theory of these novel states. However, there are still two major challenges in the community: (1) to realize interacting topological phases in real materials; (2) to understand the precise properties of critical states of matter. These problems are intrinsically strongly interacting and non-perturbative, which poses difficult obstacles for the community to solve them using conventional methods. The goals of my research are to tackle these two challenges by employing both non-perturbative numerics and quantum field theory analysis. Topological and critical states of matter have many novel properties. Quantum spin liquids, for example, exhibit an exotic phenomenon called spin-charge separation, in which the electrons are fractionalized into two particles, namely the spinon and chargon. The spinon is carrying spin-1/2 without any electric charge, while the chargon carries one electric charge without any spin. This novel property may have important applications, such as topological quantum computation and understanding high-temperature superconductors. My proposed research will study the theory of spin liquids and other strongly correlated system using numerical methods (DMRG, Monte Carlo) and analytical quantum field theory analysis. My research program will build a bridge between abstract theory and real experiments, and it will also connect different areas of physics. This research will enable condensed matter systems to be a table-top experimental platform to study interesting quantum field theories, and it will help to resolve open questions in both condensed matter and high energy physics. Besides the impact on fundamental science, my research will also likely to have an impact on technology, since novel quantum phases of matter will be critical for future quantum technology. Understanding strongly correlated materials can pave the way towards understanding high-temperature superconductors and serve as a guide in the search for a room temperature superconductor. This could have a large technological and practical impact on the devices, transportation, and energy industries of the future. The research will also contribute to training students and researchers with both advanced numerical and theoretical skills. The combination of these two skills will give them unique advantages, enabling them to make important contributions to theoretical condensed matter physics. These skills will also prepare them for material science and industry. For example, the skills of numerical simulations and data analysis will be useful for occupations in finance and software engineering.
物质的拓扑和临界状态具有根本性的重要性,并且可能对未来的量子技术产生巨大影响。这些新颖的物质状态是纯量子的,与经典对称破缺范式中的传统物质状态截然不同。近年来,我们见证了这些新态理论的巨大发展,但是,社区仍然面临两个主要挑战:(1)在真实材料中实现相互作用的拓扑相;(2)理解拓扑相的精确性质。这些问题本质上是强烈相互作用的。我的研究目标是通过采用非微扰数值和量子场论分析来解决这两个挑战。例如,量子自旋液体表现出一种称为自旋电荷分离的奇异现象,其中电子被分成两个粒子,即自旋子和电荷,自旋子携带自旋 1/2 且不带任何电荷。电荷,而电荷则携带一个电荷而没有任何自旋,这一新颖的特性可能具有非常重要的应用,例如拓扑量子计算和理解高温超导体,我提出的研究将使用数值研究自旋液体和其他相关系统的理论。我的研究计划将在抽象理论和实际实验之间架起一座桥梁,并且还将连接物理学的不同领域。顶级实验平台研究有趣的量子场论,这将有助于解决凝聚态物理和高能物理中的悬而未决的问题,除了对基础科学的影响外,我的研究也可能对技术产生影响,因为物质的新量子相将产生影响。对于未来的量子技术至关重要。了解强相关材料可以为了解高温超导体铺平道路,并为寻找室温超导体提供指导,这可能会对设备、运输、和能源工业该研究还将有助于培养具有先进数值和理论技能的学生和研究人员,这两者的结合将为他们提供独特的优势,使他们能够为理论凝聚态物理学做出重要贡献。例如,数值模拟和数据分析技能对于金融和软件工程职业很有用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

He, YinChen其他文献

He, YinChen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('He, YinChen', 18)}}的其他基金

Topological and critical states of matter in strongly correlated electronic systems
强相关电子系统中物质的拓扑和临界状态
  • 批准号:
    RGPIN-2019-04321
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Topological and critical states of matter in strongly correlated electronic systems
强相关电子系统中物质的拓扑和临界状态
  • 批准号:
    RGPIN-2019-04321
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Topological and critical states of matter in strongly correlated electronic systems
强相关电子系统中物质的拓扑和临界状态
  • 批准号:
    DGECR-2019-00182
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Launch Supplement
Topological and critical states of matter in strongly correlated electronic systems
强相关电子系统中物质的拓扑和临界状态
  • 批准号:
    RGPIN-2019-04321
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

高等教育如何影响大学生批判性思维能力发展——基于全国本科院校调查与测评的实证研究
  • 批准号:
    72174081
  • 批准年份:
    2021
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
本科生批判性思维课程有效性及其实现机制:基于准自然实验的追踪研究
  • 批准号:
    71904054
  • 批准年份:
    2019
  • 资助金额:
    19.5 万元
  • 项目类别:
    青年科学基金项目
基于“空间批判”视角的住宅现代生产研究:以20世纪长江三角洲地区为例
  • 批准号:
    51708101
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
批判性思维对中国人创新观念与行为的影响
  • 批准号:
    31671159
  • 批准年份:
    2016
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
堆垒基与Narkiewicz常数的研究
  • 批准号:
    11226279
  • 批准年份:
    2012
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

University of Louisville Biomedical Integrative Opportunity for Mentored Experience Development -PREP (UL-BIOMED-PREP)
路易斯维尔大学生物医学综合指导经验开发机会 -PREP (UL-BIOMED-PREP)
  • 批准号:
    10557638
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
The Gut as a Target to Improve Outcomes in Sepsis
肠道作为改善脓毒症预后的目标
  • 批准号:
    10552403
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
Northern California Acute Care Research Consortium (NORCARES)
北加州急症护理研究联盟 (NORCARES)
  • 批准号:
    10552463
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
Maternal inflammation in relation to offspring epigenetic aging and neurodevelopment
与后代表观遗传衰老和神经发育相关的母体炎症
  • 批准号:
    10637981
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
Hormonal Contraceptives and Adolescent Brain Development
激素避孕药和青少年大脑发育
  • 批准号:
    10668018
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了