Electrodynamics of topological and quantum materials

拓扑和量子材料的电动力学

基本信息

  • 批准号:
    RGPIN-2018-06737
  • 负责人:
  • 金额:
    $ 3.64万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Soon after quantum mechanics was invented, physicists like Einstein began to apply it to understand the properties of solids. Normally we associate quantum mechanics with small things, like atoms or subatomic particles. But the quantum theory of solids is one of the great intellectual achievements of the twentieth century, and has transformed society by enabling the invention of the transistor, the semiconductor laser, and high-density magnetic storage. Yet for all our know-how, physicists who study these things still encounter a variety of phenomena that present fundamental challenges to the theories found in textbooks. In some materials, electrons can be prevented from conducting electricity by their mutual repulsion, which causes them to get stuck, like cars in a quantum parking lot; in others, the electrons spontaneously self-organize in arrangements that cause the symmetry of the whole material to change; still others are electrical insulators that are encased by a thin metallic sheet at the surface, which have been dubbed “topological insulators” for reasons that take more than this space allows. All of them represent frontiers of our current understanding, and to emphasize this unity, Canadian researchers coined the term quantum materials to describe them. Research on quantum materials is now a dominant theme in contemporary research on solids. Like earlier research on the solid state, it promises to both advance our understanding of matter and expand our capacity to engineer new electronic materials, laying the foundation for future technology as it deepens our appreciation of nature. One of the most basic questions we can ask about a solid is how it responds to light, so optics plays an important role in this research. We can see the difference between an electrical insulator, such as glass, and a metal, such as aluminum, just by looking at them. By extending this to wavelengths beyond the visible, our research in experimental optical spectroscopy allows us to see more about the solid than we could with our eyes. The goal of my research program is to exploit modern lasers in research on quantum materials research. We can use pulsed lasers at visible wavelengths to generate far-infrared light, known as terahertz waves, which we can use to readily tell the difference between a superconductor and a metal. With intense polarized light from a laser we can identify many of the fundamental symmetries of solids with exquisite sensitivity, which further allows us to detect how these symmetries change if the electrons spontaneously self-organize. And with intense bursts of light we can also change solids and watch them evolve, exciting them out of equilibrium and then characterizing how they return to their original state, or pushing them into an altogether different one. Through these techniques, we aim to understand quantum materials more deeply, so that someday we might put them to use as we have with silicon.
量子力学发明后不久,像爱因斯坦这样的物理学家就开始应用它来理解固体的性质。通常我们将量子力学与原子或亚原子粒子等小事物联系起来,但固体的量子理论是人类伟大的智力成就之一。二十世纪,并通过晶体管、半导体激光器和高密度磁存储的发明改变了社会。然而,尽管我们拥有所有的专业知识,研究这些东西的物理学家仍然遇到了各种带来根本性挑战的现象。到理论在一些材料中,电子可以通过相互排斥来阻止导电,这会导致它们被卡住,就像量子停车场中的汽车一样,在另一些材料中,电子会自发地自我组织,从而导致对称性。整个材料的变化;还有一些是表面被薄金属片包裹的电绝缘体,它们被称为“拓扑绝缘体”,因为其占用的空间超出了我们所允许的范围。为了强调这种统一性,加拿大研究人员创造了“量子材料”一词来描述它们,就像早期的固体研究一样,它有望促进我们的理解。我们可以提出的关于固体的最基本问题之一是它如何响应光,因此光学发挥着重要作用。我们可以在这项研究中看到电气之间的区别。绝缘体(例如玻璃)和金属(例如铝),只需观察它们即可将其扩展到可见光之外的波长,我们对实验光谱学的研究使我们能够比肉眼看到更多关于固体的信息。我的研究计划的目标是在量子材料研究中利用现代激光器,我们可以使用可见波长的脉冲激光来产生远红外光,即太赫兹波,我们可以用它来轻松区分超导体。利用激光发出的强偏振光,我们可以以极高的灵敏度识别固体的许多基本对称性,这进一步使我们能够检测到如果电子自发自组织,这些对称性如何变化。还可以改变固体并观察它们的演化,激发它们脱离平衡,然后描述它们如何返回到原始状态,或者将它们推向完全不同的状态,通过这些技术,我们的目标是更深入地了解量子材料,以便有一天。我们可能会把它们放在像我们使用硅一样使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dodge, JSteven其他文献

Dodge, JSteven的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dodge, JSteven', 18)}}的其他基金

Electrodynamics of topological and quantum materials
拓扑和量子材料的电动力学
  • 批准号:
    RGPIN-2018-06737
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Electrodynamics of topological and quantum materials
拓扑和量子材料的电动力学
  • 批准号:
    RGPIN-2018-06737
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Terahertz spectroscopy for superconducting thin film quality control
用于超导薄膜质量控制的太赫兹光谱
  • 批准号:
    485680-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Engage Grants Program
Evaluation of terahertz modules for application in the paper industry
太赫兹模块在造纸工业中的应用评估
  • 批准号:
    470064-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Engage Grants Program
Frontiers in optical spectroscopy of quantum materials
量子材料光谱学前沿
  • 批准号:
    238349-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a photovoltaic testing system suitcase
光伏测试系统手提箱的研制
  • 批准号:
    453774-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Engage Grants Program
Terahertz electrical characterization of semiconductor nanowires
半导体纳米线的太赫兹电学表征
  • 批准号:
    451275-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Engage Grants Program
Frontiers in optical spectroscopy of quantum materials
量子材料光谱学前沿
  • 批准号:
    238349-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Frontiers in optical spectroscopy of quantum materials
量子材料光谱学前沿
  • 批准号:
    238349-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Kagome手性反铁磁中的新奇量子拓扑输运现象
  • 批准号:
    12304066
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于超导电路晶格系统拓扑量子信息处理的研究
  • 批准号:
    12375020
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
三维二阶拓扑绝缘体的量子输运调控
  • 批准号:
    12304070
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于奇异点的量子纠缠态拓扑调控
  • 批准号:
    12374323
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
电路QED晶格系统中拓扑界面态辅助的量子信息处理
  • 批准号:
    62301472
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Emergent quantum phenomena in epitaxial thin films of topological Dirac semimetal and its heterostructures
职业:拓扑狄拉克半金属及其异质结构外延薄膜中的量子现象
  • 批准号:
    2339309
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Continuing Grant
Topological quantum matter and crystalline symmetry
拓扑量子物质和晶体对称性
  • 批准号:
    2345644
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Continuing Grant
Room-temperature flexible manipulation of the quantum-metric structure in topological chiral antiferromagnets
拓扑手性反铁磁体中量子度量结构的室温灵活操控
  • 批准号:
    24K16999
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Control of topological quantum fields by a Moire metasurface
通过莫尔超表面控制拓扑量子场
  • 批准号:
    23K04567
  • 财政年份:
    2023
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Super Quantum Curves and Super Voros Coefficients
超级量子曲线和超级 Voros 系数
  • 批准号:
    22KJ0715
  • 财政年份:
    2023
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了