Technological advances for the neuromodulation of the spinal cord

脊髓神经调节的技术进步

基本信息

  • 批准号:
    RGPIN-2022-05187
  • 负责人:
  • 金额:
    $ 1.89万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The roles of different neuronal types in the spinal cord of the neural circuitry controlling motor function are only partially understood. New technologies may be needed to better understand the spinal circuitry in its normal function or its plasticity after partial lesions. Neuromodulation is a technique that primarily uses electrical stimulation to re-wire and strengthen spared neural connections and has offered some understanding of neural relays. However, due to the nature of electrical stimulation, which activates all neuronal types where the stimulus is applied, as well as challenges in recording neural or muscle activity during electrical stimulation, it is difficult to understand the roles of different neuronal types. Neural stimulation using light instead of electricity has the potential to overcome this challenge. Optical stimulation of neurons was initially introduced by viral transduction of a targeted group of cells to express opsins to respond to light - termed optogenetics. Optogenetics has revolutionized our knowledge of the brain circuitry, but its power is yet to be harnessed in the spinal cord and the peripheral nerves due to the technological limitations of chronic and autonomous light delivery to these highly mobile regions. My proposed research program aims to overcome these technological gaps and develop a fundamental understanding of the effects of stimulating or silencing targeted groups of neurons. My central hypothesis is that exciting or inhibiting specific neuronal types will allow us to understand the roles of different neurons on muscle activity. Being at the intersection of materials science and electrical engineering, my team and I will develop the tools to enable optical stimulation of the spinal cord coupled with wireless electromyography (EMG) signal acquisition. The technology will include flexible neural probes with micro light-emitting diodes (µLED) of different wavelengths that can be placed over the spinal cord/peripheral nerves in animals. The probes will be connected to a printed circuit board (PCB) with a microcontroller that is programmed to pulsate the µLEDs at parameters already optimized for the implemented opsins. The PCB is connected to a wirelessly rechargeable battery enabling the device to be fully implantable. The system can be modified to be wirelessly reprogrammable to change the light pulsation parameters on-demand. We will also develop electrodes and tools to wirelessly obtain EMG signals. The in vivo feasibility of the tools will be evaluated in a limited number of animal subjects. Our system will therefore enable a platform to simultaneously excite and/or inhibit multiple types of neurons and study their roles in muscle activity and neuromodulation. Our research program will therefore propel Canada to the forefront of research in fundamental understanding of neural relays beyond the brain.
不同类型的神经元在脊髓中控制运动功能的神经回路中的作用尚不完全清楚,可能需要新技术来更好地了解脊髓回路的正常功能或其在部分损伤后的可塑性。使用电刺激来重新连接和加强空闲的神经连接,并提供了对神经中继的一些理解。然而,由于电刺激的性质,它会激活施加刺激的所有神经类型,以及记录神经或神经元的挑战。电刺激期间的肌肉活动,很难理解不同神经类型的作用。使用光而不是电的神经刺激有可能克服这一挑战。神经元的光刺激最初是通过病毒转导目标细胞来表达视蛋白来对光做出反应的。光遗传学彻底改变了我们对大脑回路的认识,但由于长期和自主的光传输到这些高度移动的区域的技术限制,它的力量尚未在脊髓和周围神经中得到利用。目标克服这些技术差距,并对刺激或沉默目标神经元组的影响有一个基本的了解。我的中心假设是,刺激或抑制特定的神经元类型将使我们了解不同神经元对肌肉活动的作用。作为材料科学和电气工程的交叉领域,我和我的团队将开发能够结合无线肌电图 (EMG) 信号采集的脊髓光学刺激工具,该技术将包括带有微型发光二极管 (μLED) 的柔性神经探针。不同波长的光可以将探针放置在动物的脊髓/周围神经上,该探针将连接到带有微控制器的印刷电路板(PCB),该微控制器被编程为以已经针对所实施的视蛋白优化的参数对 µLED 进行脉冲。无线可充电电池使设备能够完全植入,该系统可以修改为可无线重新编程,以按需改变光脉动参数。我们还将开发无线电极和工具。因此,我们的系统将在有限数量的动物受试者中评估这些工具的体内可行性,从而使平台能够同时激发和/或抑制多种类型的神经元,并研究它们在肌肉活动和神经调节中的作用。因此,我们的研究计划将推动加拿大在对大脑以外的神经中继的基本理解方面走在研究的前沿。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shahriari, Dena其他文献

Brain derived neurotrophic factor release from layer-by-layer coated agarose nerve guidance scaffolds
  • DOI:
    10.1016/j.actbio.2015.02.014
  • 发表时间:
    2015-05-01
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Lynam, Daniel A.;Shahriari, Dena;Sakamoto, Jeffrey
  • 通讯作者:
    Sakamoto, Jeffrey
Functional Skeletal Muscle Regeneration with Thermally Drawn Porous Fibers and Reprogrammed Muscle Progenitors for Volumetric Muscle Injury
  • DOI:
    10.1002/adma.202007946
  • 发表时间:
    2021-02-19
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Jin, Yoonhee;Shahriari, Dena;Cho, Seung-Woo
  • 通讯作者:
    Cho, Seung-Woo
Scalable Fabrication of Porous Microchannel Nerve Guidance Scaffolds with Complex Geometries
  • DOI:
    10.1002/adma.201902021
  • 发表时间:
    2019-07-01
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Shahriari, Dena;Loke, Gabriel;Anikeeva, Polina
  • 通讯作者:
    Anikeeva, Polina
Characterizing the degradation of alginate hydrogel for use in multilumen scaffolds for spinal cord repair

Shahriari, Dena的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shahriari, Dena', 18)}}的其他基金

Technological advances for the neuromodulation of the spinal cord
脊髓神经调节的技术进步
  • 批准号:
    DGECR-2022-00078
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

企业数字化转型驱动减污降碳协同的机理与政策优化研究:基于偏向性技术进步的视角
  • 批准号:
    72304145
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
能源偏向型技术进步对企业绿色创新的影响及作用机理研究:创新要素配置视角
  • 批准号:
    72304144
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
工业技术进步方向与共同富裕实现:理论机制、效应识别及政策引导
  • 批准号:
    72373072
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
基于刚柔感知融合的水下机器人波动推进步态与时变流场自匹配研究
  • 批准号:
    52371337
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
内生技术进步不确定性下碳移除技术采纳优化研究
  • 批准号:
    72304186
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
  • 批准号:
    2338621
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Continuing Grant
Advances in rational operations in free analysis
自由分析中理性运算的进展
  • 批准号:
    2348720
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
REU Site: Recent Advances in Natural Language Processing
REU 网站:自然语言处理的最新进展
  • 批准号:
    2349452
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
  • 批准号:
    2350128
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了