Cryogenic Flow Physics to Advance Liquid Hydrogen-Based Aviation
低温流动物理学推动液氢航空发展
基本信息
- 批准号:RGPIN-2021-02450
- 负责人:
- 金额:$ 2.84万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Commercial aviation emits more than 900 million tonnes of carbon dioxide (CO2) each year into the atmosphere, accounting for 3% of total anthropogenic CO2 emissions. If it were a country, commercial aviation would rank just ahead of Germany as the sixth largest emitter of CO2. Aviation must urgently decarbonize to avoid catastrophic climate impacts. Over 70% of emissions come from medium-range flights (2000-4000 km) for which battery electrification remains infeasible for the foreseeable future. Hydrogen presents an alternative route for decarbonizing aviation-it has a large energy density by mass; it can be generated from renewable sources such as wind and solar; it can be combusted in aircraft engines with few modifications; and it can generate electricity directly via a fuel cell. However, hydrogen's low volumetric energy density means that it must be stored as a pressurized gas or cryogenic (ultra-cold) liquid. Per unit energy, liquid hydrogen requires about half the volume, making it most suitable for aviation. Adopting liquid hydrogen as a low-carbon aviation fuel will require significant re-engineering of aviation technologies, mainly due to the complexity associated with its cryogenic state. The interactions of cryogenic conditions with flow turbulence, phase transition, thermal non-equilibrium, geometrical complexities, and interfacial effects are poorly understood, despite the major impacts these processes have on the fuel storage conditions, fuel system layout, and ultimately the aircraft safety and efficiency. Without an in-depth physical understanding of cryogenic flows, liquid hydrogen-based aviation cannot advance. My research program will advance the liquid hydrogen pathway for decarbonising the aviation sector through three parallel activities. First, we will generate new computational fluid dynamics approaches that will be specifically tailored for accurate and robust simulation of cryogenic flow physics, building especially on the strengths of non-continuum approaches such as the lattice Boltzmann method. Second, we will use the developed tools to address fundamental questions that remain unanswered regarding the cryogenic behaviour of liquid hydrogen. Finally, using the insights produced by such investigations, we will develop simple yet physically-realistic models to predict the thermohydraulic behaviour of liquid hydrogen for use in engineering design. My research program will directly impact the aviation industry, enabling innovations in low-carbon aviation systems and supporting the aspirational hydrogen pathway for decarbonizing the aviation sector. It will also promote the development of hydrogen-based technologies in other hard-to-decarbonize sectors, including heavy-duty trucking, rail, and marine transportation. Therefore, the proposed program will support economic and energy diversification efforts within Canada while simultaneously helping Canada reach its urgent environmental and climate goals.
商业航空每年将超过9亿吨二氧化碳(CO2)排入大气中,占人为CO2总排放量的3%。如果是一个国家,商业航空将排在德国作为二氧化碳的第六大发射极。航空必须紧急脱碳,以避免灾难性的气候影响。超过70%的排放来自中距离航班(2000-4000公里),在可预见的将来,电池电气化仍然是不可行的。氢为脱碳航空提供了另一种途径 - 质量的能量密度很大。它可以从可再生能源(例如风能和太阳能)产生。它可以在飞机发动机中燃烧,很少进行修改。它可以直接通过燃料电池发电。但是,氢的低容量能量密度意味着必须将其存储为加压气体或低温(超冷)液体。每单位能量,液体氢需要大约一半的体积,使其最适合航空。采用液体氢作为低碳航空燃料将需要对航空技术进行大量重新设计,这主要是由于与其低温状态相关的复杂性。低温条件与流动湍流,相变,热非平衡,几何复杂性和界面效应的相互作用尚不清楚,尽管这些过程对燃油存储条件,燃油系统布局产生了重大影响,并最终是飞机安全和飞机安全和飞机安全的影响。效率。没有对低温流的深入物理理解,基于液体氢的航空就无法发展。我的研究计划将通过三个平行活动推进液态氢途径,以使航空部门脱碳。首先,我们将生成新的计算流体动力学方法,这些方法将专门针对低温流体物理学的准确且可靠的模拟进行量身定制,尤其是基于非continuum方法的强度,例如lattice boltzmann方法。其次,我们将使用开发的工具来解决有关液体氢的低温行为尚未得到答复的基本问题。最后,使用此类研究产生的见解,我们将开发简单但具有物理现实的模型,以预测液体氢在工程设计中的热含量行为。我的研究计划将直接影响航空业,从而在低碳航空系统中进行创新,并支持脱碳水化行业的理想氢途径。它还将促进其他难以挑选的领域的基于氢的技术的发展,包括重型卡车运输,铁路和海洋运输。因此,拟议的计划将支持加拿大境内的经济和能源多元化工作,同时帮助加拿大实现其紧急的环境和气候目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brinkerhoff, Joshua其他文献
Brinkerhoff, Joshua的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brinkerhoff, Joshua', 18)}}的其他基金
Evaluation of Turbulent Heat Transfer Enhancement in Steam-Cracking Furnace Tubes with Modified Internal Textures
改进内部织构的蒸汽裂解炉管强化湍流传热的评价
- 批准号:
549243-2019 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Alliance Grants
Multi-physics, multi-scale modelling of liquefied natural gas (LNG) in marine shipping and heavy-duty trucking: transport, storage, spill, and atmospheric dispersion
海运和重型卡车运输中液化天然气 (LNG) 的多物理场、多尺度建模:运输、存储、泄漏和大气扩散
- 批准号:
519885-2017 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative Research and Development Grants
Reduced-Order Models of Wind Farm Blockage and Far-Field Wake Recovery
风电场阻塞和远场尾流恢复的降阶模型
- 批准号:
556326-2020 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Alliance Grants
Cryogenic Flow Physics to Advance Liquid Hydrogen-Based Aviation
低温流动物理学推动液氢航空发展
- 批准号:
RGPIN-2021-02450 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Multi-physics, multi-scale modelling of liquefied natural gas (LNG) in marine shipping and heavy-duty trucking: transport, storage, spill, and atmospheric dispersion
海运和重型卡车运输中液化天然气 (LNG) 的多物理场、多尺度建模:运输、存储、泄漏和大气扩散
- 批准号:
519885-2017 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative Research and Development Grants
Evaluation of Turbulent Heat Transfer Enhancement in Steam-Cracking Furnace Tubes with Modified Internal Textures
改进内部织构的蒸汽裂解炉管强化湍流传热的评价
- 批准号:
549243-2019 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Alliance Grants
Reduced-Order Models of Wind Farm Blockage and Far-Field Wake Recovery
风电场阻塞和远场尾流恢复的降阶模型
- 批准号:
556326-2020 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Alliance Grants
Compressible flow in a novel radial turbo compressor: simulation and experimental validation
新型径向涡轮压缩机中的可压缩流动:模拟和实验验证
- 批准号:
538568-2019 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Engage Grants Program
Towards a General Analytical Model of Aerodynamic and Phase Instabilities in Advanced Fluid Machinery
先进流体机械中空气动力学和相位不稳定性的通用分析模型
- 批准号:
RGPIN-2015-06562 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Multi-physics, multi-scale modelling of liquefied natural gas (LNG) in marine shipping and heavy-duty trucking: transport, storage, spill, and atmospheric dispersion
海运和重型卡车运输中液化天然气 (LNG) 的多物理场、多尺度建模:运输、存储、泄漏和大气扩散
- 批准号:
519885-2017 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
基于物理信息DeepONet神经网络及多孔介质孔隙尺度建模的多相流动力学研究
- 批准号:12372246
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
多物理场耦合作用下氟盐冷却高温堆螺旋燃料流动与传热机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于边界层流动控制降低磁流体压降的物理机制研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
水煤浆水平管道输运流变物理机理及流动形态演变规律
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超高压燃油喷射系统快速流动过程的物理特征研究及预测模型的构建
- 批准号:
- 批准年份:2020
- 资助金额:150 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Development of a Physics-Data Driven Surface Flux Parameterization for Flow in Complex Terrain
开发物理数据驱动的复杂地形流动表面通量参数化
- 批准号:
2336002 - 财政年份:2024
- 资助金额:
$ 2.84万 - 项目类别:
Continuing Grant
Uncertainty aware virtual treatment planning for peripheral pulmonary artery stenosis
外周肺动脉狭窄的不确定性虚拟治疗计划
- 批准号:
10734008 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
CAREER: Understanding the Physics of Turbulent Flow, Erosion and Depositional Patterns in River Systems
职业:了解河流系统中湍流、侵蚀和沉积模式的物理原理
- 批准号:
2239550 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Continuing Grant
Collaborative Research: Physics Informed Real-time Optimal Power Flow
合作研究:基于物理的实时最佳潮流
- 批准号:
2334448 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Standard Grant
CAREER: Continuous Flow Chemistry of Microelectronics Polymers via Combined Physics-based and Machine Learning Models
职业:通过基于物理和机器学习相结合的微电子聚合物的连续流动化学
- 批准号:
2238147 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Continuing Grant