Towards 3D ultrafast Doppler imaging with a portable ultrasound scanner
使用便携式超声扫描仪实现 3D 超快多普勒成像
基本信息
- 批准号:RGPIN-2021-03539
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ultrasound imaging is a common imaging modality in clinical practice. Using ultrasound transducers, the combination of acoustic wave emission in biological tissues, followed by the recording of backscattered echoes allows the reconstruction of anatomical images. The transducers are linear arrays of piezoelectric elements, and typically have up to 256 of them. Each element is connected to its own electrical channel that transmits its signal to the system. However, conventional ultrasound scanners cannot sample all these channels simultaneously, which means that only a part of the backscattered echoes can be recorded and displayed at once. The full 2D image is thus reconstructed line-per-line, with one transmission/reception for each line. This scanning approach intrinsically limits the framerate of the method (50 images/s). This is problematic when transient phenomenon are studied, such as blood flows. Recently, transducers with 32x32 matrix arrays of elements have enabled volumetric imaging. However, the same constraint on limited channel number considerably hinders the development of 4D ultrasound. My program investigates methods to overcome the limitations of conventional ultrasound imaging: its low framerate constraining blood flow detection, and its limited capacity to provide volumetric imaging. Using cutting-edge programmable ultrasound scanners, I use the so-called Ultrafast Ultrasound technology to achieve very-high framerates (up to 10000 images/s). These ultrafast scanners can fully sample 256 channels and reconstruct a full image with a single unfocused ultrasound transmission/reception. This high number of channels is still insufficient to drive a 32x32 matrix probe. Sophisticated prototypes combining four ultrafast scanners to drive one matrix probe exist but have two main drawbacks: their huge hardware cost and the loss of the system's portability, a key feature of ultrasound imaging. I propose to do "more with less": perform 4D ultrafast imaging with only portable 256-channels scanner, and apply it to volumetric blood-flow imaging. I will leverage on the recent developments of multiplexers, which makes it possible to drive 4 transducer's elements with a single channel. Using a sparse number of elements, it is possible to reconstruct volumes while keeping a high framerate and high image quality. I am developing simulation tools to evaluate the physical parameters for this ultrafast volumetric approach using sparse apertures. I am also developing two in vitro setups. One is a calibration water tank with a high-precision hydrophone to directly assess the acoustic pressure fields. The other is a Doppler phantom, mimicking a blood stream in a pulsatile artery, on which I will design spatiotemporal filters to detect blood backscattering signals. Lastly, I will also work on the in vivo proof-of-concept application on newborns. My approach will enable transfontanellar 4D imaging of neonate brain vascularization at the bedside.
超声成像是临床实践中常见的成像方式。使用超声换能器,结合生物组织中的声波发射,然后记录反向散射回声,可以重建解剖图像。换能器是压电元件的线性阵列,通常最多有 256 个。每个元件都连接到自己的电气通道,将其信号传输到系统。然而,传统的超声波扫描仪无法同时对所有这些通道进行采样,这意味着一次只能记录和显示一部分反向散射回波。因此,完整的 2D 图像是逐行重建的,每行一次传输/接收。这种扫描方法本质上限制了该方法的帧速率(50 个图像/秒)。当研究瞬态现象(例如血流)时,这是有问题的。最近,具有 32x32 元件矩阵阵列的传感器已经实现了体积成像。然而,同样对有限通道数的限制极大地阻碍了4D超声的发展。我的程序研究了克服传统超声成像局限性的方法:其低帧率限制了血流检测,以及提供体积成像的能力有限。使用尖端的可编程超声波扫描仪,我使用所谓的超快超声波技术来实现非常高的帧速率(高达 10000 个图像/秒)。这些超快扫描仪可以对 256 个通道进行完全采样,并通过单个未聚焦超声传输/接收重建完整图像。如此多的通道数量仍然不足以驱动 32x32 矩阵探头。存在结合四个超快扫描仪来驱动一个矩阵探头的复杂原型,但有两个主要缺点:其巨大的硬件成本和系统便携性的损失,而便携性是超声成像的一个关键特征。我建议“少花钱多办事”:仅用便携式256通道扫描仪进行4D超快成像,并将其应用于体积血流成像。我将利用多路复用器的最新发展,这使得用单个通道驱动 4 个传感器元件成为可能。使用稀疏数量的元素,可以在保持高帧速率和高图像质量的同时重建体积。我正在开发模拟工具来评估这种使用稀疏孔径的超快体积方法的物理参数。我还在开发两种体外装置。一种是带有高精度水听器的校准水箱,可直接评估声压场。另一个是多普勒模型,模拟搏动动脉中的血流,我将在其上设计时空滤波器来检测血液反向散射信号。最后,我还将致力于新生儿的体内概念验证应用。我的方法将能够在床边对新生儿脑血管形成进行经鼻孔 4D 成像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Villemain, Olivier其他文献
Local arterial stiffness measured by ultrafast ultrasound imaging in childhood cancer survivors treated with anthracyclines.
- DOI:
10.3389/fcvm.2023.1150214 - 发表时间:
2023 - 期刊:
- 影响因子:3.6
- 作者:
Rasouli, Rahna;Baranger, Jerome;Slorach, Cameron;Hui, Wei;Venet, Maelys;Nguyen, Minh B.;Henry, Matthew;Gopaul, Josh;Nathan, Paul C.;Mertens, Luc;Villemain, Olivier - 通讯作者:
Villemain, Olivier
Impact of anatomic characteristics and initial biventricular surgical strategy on outcomes in various forms of double-outlet right ventricle
- DOI:
10.1016/j.jtcvs.2016.05.019 - 发表时间:
2016-09-01 - 期刊:
- 影响因子:6
- 作者:
Villemain, Olivier;Belli, Emre;Bonnet, Damien - 通讯作者:
Bonnet, Damien
Non-invasive imaging techniques to assess myocardial perfusion
- DOI:
10.1080/17434440.2020.1834844 - 发表时间:
2020-10-23 - 期刊:
- 影响因子:3.1
- 作者:
Villemain, Olivier;Baranger, Jerome;Mertens, Luc - 通讯作者:
Mertens, Luc
Antenatal occlusion of a ductal arteriosus aneurysm: a potential postnatal surgical emergency. Case report and literature review
- DOI:
10.1017/s1047951120002711 - 发表时间:
2020-11-01 - 期刊:
- 影响因子:1
- 作者:
Aly, Safwat A.;Contreras, Juan;Villemain, Olivier - 通讯作者:
Villemain, Olivier
Outcomes after common arterial trunk repair: Impact of the surgical technique
- DOI:
10.1016/j.jtcvs.2020.10.147 - 发表时间:
2021-09-13 - 期刊:
- 影响因子:6
- 作者:
Derridj, Neil;Villemain, Olivier;Bonnet, Damien - 通讯作者:
Bonnet, Damien
Villemain, Olivier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Villemain, Olivier', 18)}}的其他基金
Towards 3D ultrafast Doppler imaging with a portable ultrasound scanner
使用便携式超声扫描仪实现 3D 超快多普勒成像
- 批准号:
RGPIN-2021-03539 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Towards 3D ultrafast Doppler imaging with a portable ultrasound scanner
使用便携式超声扫描仪实现 3D 超快多普勒成像
- 批准号:
DGECR-2021-00404 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
- 批准号:22309176
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
3D打印-前端聚合反应耦合新方法构筑凝胶支架材料及其应用基础研究
- 批准号:22378202
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
分层悬浮3D打印工程化类弹性蛋白用于组织工程肺脏的构建研究
- 批准号:32301209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印多孔钛合金诱导瘢痕组织膜内巨噬细胞分泌TNFα+/TGFβ1+/BMP2+组织液促进大段骨缺损修复
- 批准号:82302684
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Ultrafast sintering of dental zirconia: composition-processing-property relationships with high-throughput fail-fast screening
牙科氧化锆的超快烧结:成分-加工-性能关系与高通量快速失败筛选
- 批准号:
10792738 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
PFI-RP: Towards Democratization of Ultrafast 3D Ultrasound Imaging
PFI-RP:迈向超快 3D 超声成像的民主化
- 批准号:
2329865 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
Ultrafast 3D Super-Resolution Ultrasound Imaging with Bias Switchable Row-Column Arrays
具有偏置可切换行列阵列的超快 3D 超分辨率超声成像
- 批准号:
575483-2022 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Next-generation ultrafast functional 3D pulmonary imaging
下一代超快功能 3D 肺部成像
- 批准号:
10687214 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Next-generation ultrafast functional 3D pulmonary imaging
下一代超快功能 3D 肺部成像
- 批准号:
10314284 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别: