Numerical methods for modelling infiltration processes in heterogeneous soils and their interactions with surface flows
模拟异质土壤渗透过程及其与地表流相互作用的数值方法
基本信息
- 批准号:RGPIN-2022-05220
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of the proposed research program is to develop new numerical methods for modelling infiltration processes in heterogeneous soils and their interactions with surface flows. We will propose robust computational techniques for the simulation of unstable infiltration in heterogeneous soils, develop efficient numerical models for coupled surface-subsurface flows, propose error estimators and develop new space-time techniques to improve the accuracy and efficiency of the proposed numerical models. We will use the new continuum model that we have recently developed which accurately describes the formation of gravity fingers during infiltration in soils. Robust and efficient two-dimensional and three-dimensional numerical approximation methods will be developed for a new generation of multiphase-flow models in porous media known as phase-field models. Phase-field models are based on the fact that the non-homogeneity of the system and the macroscopic interfaces should be considered for computing the energy of the system. The sharp interfaces separating different phases in the system should be replaced by diffusive interfaces by the introduction of a diffusive order parameter or phase-field parameter that varies smoothly over thin thickness regions. The spatiotemporal evolution in these regions can be described by a set of coupled partial differential equations and solved numerically using suitable discretization techniques. The time-evolution of the phase-field parameter is derived from the variational principle by minimizing the free energy expression of the system. High-order accurate discretizations will be developed and a suitable temporal integration will be used to deal with the issues of the instability associated with the sources of stiffness in the numerical solutions. The flux terms of the governing equations of the coupled system of surface-subsurface flows can be split into a hyperbolic part and an elliptic part. Non-oscillatory high-order continuous/discontinuous reconstructions of the solutions will be developed in order to design stable and accurate numerical schemes. A suitable temporal scheme is required to deal with the issues of the instability associated with the sources of stiffness in the numerical solutions of the system. The semi-discrete form of the system can be split into linear stiff terms and residual nonlinear non-stiff terms, and implicit time integration methods will be used for stiff terms and the explicit temporal schemes can be used to integrate non-stiff terms. In our approach, we will use errors estimators, mesh adaptation, and propose new technique to accurately capture the propagation of the wetting fronts. The efficiency, convergence and accuracy of the proposed numerical models will be examined by several numerical tests. The spatial convergence rate of the proposed schemes will be determined numerically and the impact of the semi-implicit approach on the temporal order of these methods will be studied.
拟议研究计划的目的是开发新的数值方法来模拟异质土壤中的渗透过程及其与表面流的相互作用。我们将提出稳健的计算技术来模拟异质土壤中的不稳定渗透,开发耦合地表-地下流的有效数值模型,提出误差估计器并开发新的时空技术以提高所提出的数值模型的准确性和效率。我们将使用我们最近开发的新连续体模型,该模型准确地描述了土壤渗透过程中重力指的形成。将为多孔介质中的新一代多相流模型(称为相场模型)开发稳健且高效的二维和三维数值逼近方法。相场模型基于计算系统能量时应考虑系统的非均匀性和宏观界面的事实。系统中分隔不同相的尖锐界面应被扩散界面所取代,方法是引入在薄厚度区域上平滑变化的扩散阶参数或相场参数。这些区域的时空演化可以通过一组耦合偏微分方程来描述,并使用合适的离散技术进行数值求解。相场参数的时间演化是通过最小化系统的自由能表达式从变分原理导出的。将开发高阶精确离散化,并使用合适的时间积分来处理与数值解中的刚度源相关的不稳定性问题。地表-地下流耦合系统控制方程的通量项可分为双曲线部分和椭圆部分。将开发解决方案的非振荡高阶连续/不连续重建,以设计稳定且准确的数值方案。需要合适的时间方案来处理与系统数值解中的刚度源相关的不稳定性问题。系统的半离散形式可分为线性刚性项和残余非线性非刚性项,刚性项采用隐式时间积分方法,非刚性项采用显式时间格式积分。在我们的方法中,我们将使用误差估计器、网格自适应,并提出新技术来准确捕获润湿锋的传播。所提出的数值模型的效率、收敛性和准确性将通过多次数值试验来检验。所提出方案的空间收敛速度将被数值确定,并且半隐式方法对这些方法的时间顺序的影响将被研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Beljadid, Abdelaziz其他文献
Beljadid, Abdelaziz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Beljadid, Abdelaziz', 18)}}的其他基金
Numerical methods for modelling infiltration processes in heterogeneous soils and their interactions with surface flows
模拟异质土壤渗透过程及其与地表流相互作用的数值方法
- 批准号:
DGECR-2022-00526 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Launch Supplement
Numerical methods for modelling infiltration processes in heterogeneous soils and their interactions with surface flows
模拟异质土壤渗透过程及其与地表流相互作用的数值方法
- 批准号:
DGECR-2022-00526 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
产品造型的类比推理式对抗生成设计方法研究
- 批准号:51905175
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于近壁面二次流修正方法的高负荷轴流压气机吸力面-端面造型反设计研究
- 批准号:51906027
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于知识重用的车身自动几何建模方法研究
- 批准号:51905389
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于弱监督深度学习的三维模型多特征自适应形状分析方法研究
- 批准号:61872321
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
面向设计重用的特征CAD模型检索及曲线/曲面重建方法研究
- 批准号:61802355
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Numerical Modelling Methods and Risk Mitigation for Underground Excavation Design in Rockbursting Conditions
岩爆条件下地下开挖设计的数值模拟方法和风险缓解
- 批准号:
570326-2022 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Numerical Modelling Methods and Risk Mitigation for Underground Excavation Design in Rockbursting Conditions
岩爆条件下地下开挖设计的数值模拟方法和风险缓解
- 批准号:
570326-2022 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Numerical methods for modelling infiltration processes in heterogeneous soils and their interactions with surface flows
模拟异质土壤渗透过程及其与地表流相互作用的数值方法
- 批准号:
DGECR-2022-00526 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Launch Supplement
High-performance numerical methods for modelling of granular flows and sediment dynamics
用于颗粒流和沉积物动力学建模的高性能数值方法
- 批准号:
RGPIN-2017-06308 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for modelling infiltration processes in heterogeneous soils and their interactions with surface flows
模拟异质土壤渗透过程及其与地表流相互作用的数值方法
- 批准号:
DGECR-2022-00526 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Launch Supplement