The Statistical Mechanics of Lattice Models of Polymers
聚合物晶格模型的统计力学
基本信息
- 批准号:RGPIN-2019-06303
- 负责人:
- 金额:$ 1.24万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Polymers appear in many different forms, namely as soft or hard solids, as liquids, glues, or melts, or as networks of covalently bonded monomers, or adsorbed onto a surface, or twisted and entangled in knotted conformations. Underlying this rich set of forms and thermodynamic phases is the notion of polymer entropy, which is related to the number of conformations of a polymer molecule. In this application I shall give an overview of my ongoing work in this field and explain several avenues for continuing my research program. I will also explain the current involvement of students in my research program and their contributions, as well as future projects which are suitable for training students in Monte Carlo simulations and statistical mechanics. Polymer entropy was studied by Nobel prize winners Flory in the 1940s, and de Gennes in the 1970s. A rich mathematical theory to model the entropy of string-like objects was built on their work. This includes the self-avoiding walk and related models, directed path models in combinatorial mathematics, percolation, networks, as well as numerical methods including Monte Carlo methods. These models are ubiquitous in the statistical mechanics of random clusters and in the theory of phase transitions and are related to classical models of spin system models of magnetic materials. This area of research straddles rigorous and applied statistical mechanics, combinatorial mathematics, probability theory, and mathematical physics. There is also a connection to experimental and theoretical polymer physics and chemistry. Research in this area is important because it adds to the understanding of phase behaviour and scaling in models of interacting and dense polymers and on networks. Over the last cycle my students and I have worked on mean field scaling for networks in molecular biology and on a self-avoiding walk model of compressed dense polymers. With other collaborators I have worked on the phase diagrams of linear and branched polymers and on partition function zeros of adsorbing self-avoiding walks. My short term goals are to expand my research into the partition function zeros of models of self-avoiding walks and directed lattice paths, to apply Flory-Huggins theory (a theory of dense polymer solutions) to models of copolymer melts, and to perform simulations of lattice spin systems using the GARM algorithm. In addition, I am investigating the phase diagram of pulled adsorbing models of branched polymers using self-avoiding walk models. Studies on partition function zeros and models of dense polymers will be done with graduate students. The longer term goals are to consider the usefulness of Flory-Huggins theory in creating a framing for understanding the phase diagram of dense polymer systems on the one hand, and on the other hand to examine the mathematical properties of partition function zeros and the role they play in creating critical points in self-avoiding walk models of interacting polymers.
聚合物以许多不同的形式出现,即作为软或硬固体,作为液体、胶水或熔体,或作为共价键合单体的网络,或吸附在表面上,或以打结构象的形式扭曲和缠结。热力学相是聚合物熵的概念,它与聚合物分子的构象数量有关。在本申请中,我将概述我在该领域正在进行的工作,并解释一些内容。我还将解释学生目前参与我的研究项目的情况和他们的贡献,以及适合培训学生进行诺贝尔奖研究的蒙特卡罗模拟和统计力学的未来项目。 20 世纪 40 年代的获奖者弗洛里(Flory)和 1970 年代的德热尼斯(de Gennes)在他们的工作基础上建立了丰富的数学理论来模拟弦状物体的熵,其中包括自回避行走和相关的理论。模型、组合数学、渗透、网络中的有向路径模型以及包括蒙特卡罗方法在内的数值方法,这些模型在随机簇统计力学和相变理论中普遍存在,并且与自旋系统的经典模型相关。该研究领域涵盖严格的应用统计力学、组合数学、概率论和数学物理,并且与实验和理论聚合物物理和化学也有联系,因为它很重要。增加了对相互作用和致密聚合物模型以及网络中的相行为和缩放的理解。在上一个周期中,我和我的学生研究了分子生物学中网络的平均场缩放以及压缩致密的自回避行走模型。我与其他合作者一起研究了线性和支化聚合物的相图以及吸附自回避游走的配分函数零点。我的短期目标是将我的研究扩展到自回避游走模型的配分函数零点。 。 和定向晶格路径,将 Flory-Huggins 理论(一种致密聚合物溶液理论)应用于共聚物熔体模型,并使用 GARM 算法对晶格自旋系统进行模拟此外,我正在研究拉吸附的相图。使用自回避行走模型的支化聚合物模型将与研究生一起完成配分函数零点和致密聚合物模型的研究。弗洛里-哈金斯理论一方面创建了一个理解致密聚合物系统相图的框架,另一方面检查了配分函数零点的数学性质以及它们在创建自回避临界点中所起的作用相互作用聚合物的行走模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JansevanRensburg, Esaias其他文献
JansevanRensburg, Esaias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JansevanRensburg, Esaias', 18)}}的其他基金
The Statistical Mechanics of Lattice Models of Polymers
聚合物晶格模型的统计力学
- 批准号:
RGPIN-2019-06303 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics of Lattice Models of Polymers
聚合物晶格模型的统计力学
- 批准号:
RGPIN-2019-06303 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics of Lattice Models of Polymers
聚合物晶格模型的统计力学
- 批准号:
RGPIN-2019-06303 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics of Lattice Models of Polymers
聚合物晶格模型的统计力学
- 批准号:
RGPIN-2019-06303 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
- 批准号:
RGPIN-2014-04731 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
- 批准号:
RGPIN-2014-04731 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
- 批准号:
RGPIN-2014-04731 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
- 批准号:
RGPIN-2014-04731 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
- 批准号:
RGPIN-2014-04731 - 财政年份:2016
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
- 批准号:
RGPIN-2014-04731 - 财政年份:2016
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于格子Boltzmann异构并行计算的碎屑流非稳态动力学模型研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
电场强化固液相变传热介观建模及机理研究
- 批准号:51906051
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于离散统一气体动力学的纳米颗粒分形团聚体多尺度流动直接数值模拟
- 批准号:51906044
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高导热微米级非磁性颗粒强化磁流体换热机理研究
- 批准号:11902135
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
多物理过程与界面动力学耦合的界面传质毛细对流振荡失稳机理及控制
- 批准号:51876092
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
The Statistical Mechanics of Lattice Models of Polymers
聚合物晶格模型的统计力学
- 批准号:
RGPIN-2019-06303 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics of Lattice Models of Polymers
聚合物晶格模型的统计力学
- 批准号:
RGPIN-2019-06303 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics of Lattice Models of Polymers
聚合物晶格模型的统计力学
- 批准号:
RGPIN-2019-06303 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics of Lattice Models of Polymers
聚合物晶格模型的统计力学
- 批准号:
RGPIN-2019-06303 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics of Lattice Models of Polymers
聚合物晶格模型的统计力学
- 批准号:
RGPIN-2019-06303 - 财政年份:2019
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual