Fluidics for Energy

能源流体学

基本信息

  • 批准号:
    RGPIN-2020-06117
  • 负责人:
  • 金额:
    $ 4.66万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The global energy challenge is a fluids problem. The world's smallest fluids technologies have already had large scale impact in conventional energy applications. Fluidics (microfluidics and nanofluidics generally) are now employed commercially for chemical effectiveness testing that improves the efficiency of oil and gas operations worldwide - an outcome of our last Discovery grant. This program sets out a new direction: Fluidics for renewable energy. Deep geothermal energy is an abundant renewable resource that is uniquely stable and reliable. The newest geothermal methods contain the working fluid in a closed circuit and lever powerful thermosiphon pumping. The key to realizing the potential of this technology is finding a working fluid that is stable and maximizes energy recovery under harsh operating conditions. Achieving this goal will require stability testing (Aim 1), thermal property measurements (Aim 2), and their automation as a thermal fluid development system (Aim 3). Aim 1 will provide the first fluidic system for energy working fluid stability testing under operational conditions. The stability of the test fluid, here a phase change slurry, will be assessed within a fluidic chip that provides hot-cold temperature cycling, pressures, and shear rates matching geothermal operations. Aim 2 will provide the thermal property measurements. While the fluidics community have excelled at measuring physical properties of fluids, the measurement of thermal properties (heat capacity, thermal conductivity) requires a fresh approach. Here we will abandon conventional approaches, and employ an all-silicon chip that is visually-opaque but infrared-transparent. Thermal properties of the fluid are determined from the temperature of fluids within thermally-isolated silicon islands. This approach will provide thermal property measurements that surpass existing methods in accuracy and throughput, as required for Aim 3. Aim 3 automates the application of Aim-1 and Aim-2 methods to develop optimized formulations. Previous fluidic testing answered well-defined questions (e.g. chemical A with oil B). However, the challenge of developing an optimized working fluid is open-ended (e.g. many potential concentrations of many potential ingredients). Such challenges require both rapid iterative testing and intelligent control. Here we combine the above high-throughput fluidic testing methods with machine-guided experiment planning in a closed, automated loop that optimizes for both thermal performance and stability. Beyond the geothermal application that focuses this work, we see broad applicability. An emerging application is the development of high-efficiency, low-impact refrigerants. Also the merger of fluidic testing with machine learning represents an essential maturation of this field. This project provides an outstanding opportunity for HQP at the intersection of thermofluids, fluidics and automation - all in the service of renewable energy.
全球能源挑战是一个流体问题。世界上最小的流体技术已经对传统能源应用产生了很大的影响。流体力学(通常通常在商业上用于化学有效性测试,可以提高全球石油和天然气运营的效率,这是我们上次发现赠款的结果。该程序阐​​明了一个新的方向:可再生能源的流体。 深地热能是一种丰富的可再生资源,具有独特的稳定和可靠。最新的地热方法包含闭路中的工作流体,并且杠杆强大的热节泵泵。意识到这项技术的潜力的关键是找到一种工作流体,该液体稳定,并在严格的操作条件下最大化能量回收率。实现此目标将需要稳定性测试(AIM 1),热属性测量(AIM 2)及其自动化为热流体开发系统(AIM 3)。 AIM 1将在操作条件下提供第一个用于能源工作流体稳定性测试的流体系统。在这里,将评估测试流体的稳定性,此处的变化浆液将在流体芯片中进行评估,该芯片可提供热冷的温度循环,压力和剪切速率与地热操作相匹配。 AIM 2将提供热属性测量。尽管流体界在测量流体的物理特性方面表现出色,但测量热性能(热容量,导热率)需要一种新的方法。在这里,我们将放弃常规方法,并采用视觉上但红外透明剂的全硅芯片。流体的热性能取决于热分离的硅岛中的流体温度。这种方法将提供热能测量值,以超过AIM 3所需的准确性和吞吐量。AIM3自动使用AIM-1和AIM-2方法的应用以开发优化的配方。以前的流体测试回答了定义明确的问题(例如,用油B化学a)。但是,开发优化的工作流体的挑战是开放式的(例如,许多潜在成分的许多潜在浓度)。这些挑战需要快速迭代测试和智能控制。在这里,我们将上述高通量流体测试方法与机器引导的实验计划结合在一起,以封闭的自动环中的循环进行优化,以优化热性能和稳定性。 除了重点的地热应用外,我们还看到了广泛的适用性。新兴应用是高效,低影响制冷剂的发展。流体测试与机器学习的合并也代表了该领域的重要成熟。该项目为HQP提供了热门流动性,流体和自动化的交点的出色机会 - 所有这些都为可再生能源提供服务。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Sinton, David其他文献

Nanohole arrays in metal films as optofluidic elements: progress and potential
  • DOI:
    10.1007/s10404-007-0221-0
    10.1007/s10404-007-0221-0
  • 发表时间:
    2008-01-01
    2008-01-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Sinton, David;Gordon, Reuven;Brolo, Alexandre G.
    Sinton, David;Gordon, Reuven;Brolo, Alexandre G.
  • 通讯作者:
    Brolo, Alexandre G.
    Brolo, Alexandre G.
Microfluidic and nanofluidic phase behaviour characterization for industrial CO2, oil and gas
  • DOI:
    10.1039/c7lc00301c
    10.1039/c7lc00301c
  • 发表时间:
    2017-08-21
    2017-08-21
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Bao, Bo;Riordon, Jason;Sinton, David
    Bao, Bo;Riordon, Jason;Sinton, David
  • 通讯作者:
    Sinton, David
    Sinton, David
Energy- and carbon-efficient CO2/CO electrolysis to multicarbon products via asymmetric ion migration-adsorption
  • DOI:
    10.1038/s41560-022-01188-2
    10.1038/s41560-022-01188-2
  • 发表时间:
    2023-01-12
    2023-01-12
  • 期刊:
  • 影响因子:
    56.7
  • 作者:
    Ozden, Adnan;Li, Jun;Sinton, David
    Ozden, Adnan;Li, Jun;Sinton, David
  • 通讯作者:
    Sinton, David
    Sinton, David
Pore-Scale Assessment of Nanoparticle-Stabilized CO2 Foam for Enhanced Oil Recovery
  • DOI:
    10.1021/ef5011995
    10.1021/ef5011995
  • 发表时间:
    2014-10-01
    2014-10-01
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Nguyen, Phong;Fadaei, Hossein;Sinton, David
    Nguyen, Phong;Fadaei, Hossein;Sinton, David
  • 通讯作者:
    Sinton, David
    Sinton, David
Pressure Drop in Rectangular Microchannels as Compared With Theory Based on Arbitrary Cross Section
共 85 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 17
前往

Sinton, David的其他基金

Microfluidics and Energy
微流体与能源
  • 批准号:
    CRC-2015-00272
    CRC-2015-00272
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
    $ 4.66万
  • 项目类别:
    Canada Research Chairs
    Canada Research Chairs
Energy and Fluids
能量和流体
  • 批准号:
    CRC-2021-00316
    CRC-2021-00316
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
    $ 4.66万
  • 项目类别:
    Canada Research Chairs
    Canada Research Chairs
Phase change material based fluid emulsion for enhanced geothermal recovery
用于增强地热采收的基于相变材料的流体乳液
  • 批准号:
    549600-2019
    549600-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
    $ 4.66万
  • 项目类别:
    Alliance Grants
    Alliance Grants
NSERC I2I Phase 1: Local regeneration of CO2 to achieve scalable electroreduction to multi-carbon products
NSERC I2I 第一阶段:CO2 的局部再生,以实现多碳产品的可扩展电解还原
  • 批准号:
    561574-2021
    561574-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
    $ 4.66万
  • 项目类别:
    Idea to Innovation
    Idea to Innovation
Microfluidics And Energy
微流控与能源
  • 批准号:
    CRC-2015-00272
    CRC-2015-00272
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
    $ 4.66万
  • 项目类别:
    Canada Research Chairs
    Canada Research Chairs
Fluidics for Energy
能源流体学
  • 批准号:
    RGPIN-2020-06117
    RGPIN-2020-06117
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual
Electrosynthesis of Ethylene for the chemical industry
化学工业用电合成乙烯
  • 批准号:
    568787-2021
    568787-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
    $ 4.66万
  • 项目类别:
    Alliance Grants
    Alliance Grants
Phase change material based fluid emulsion for enhanced geothermal recovery
用于增强地热采收的基于相变材料的流体乳液
  • 批准号:
    549600-2019
    549600-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 4.66万
    $ 4.66万
  • 项目类别:
    Alliance Grants
    Alliance Grants
100-Patient Ventilator for COVID-19
适用于 COVID-19 的 100 名患者呼吸机
  • 批准号:
    550397-2020
    550397-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 4.66万
    $ 4.66万
  • 项目类别:
    Alliance Grants
    Alliance Grants
Microfluidics and Energy
微流体与能源
  • 批准号:
    CRC-2015-00272
    CRC-2015-00272
  • 财政年份:
    2020
  • 资助金额:
    $ 4.66万
    $ 4.66万
  • 项目类别:
    Canada Research Chairs
    Canada Research Chairs

相似国自然基金

miPEP398-miR398诱导亚低温条件下番茄种子活力的机制研究
  • 批准号:
    32372677
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
全基因组关联分析揭示ZmMGT1调控玉米种子活力的功能机理
  • 批准号:
    32372161
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
生物钟核受体Rev-erbα在缺血性卒中神经元能量代谢中的改善作用及机制研究
  • 批准号:
    82371332
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
脐带间充质干细胞微囊联合低能量冲击波治疗神经损伤性ED的机制研究
  • 批准号:
    82371631
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
协同多精度活力测度的高密度城区公园供需评价与调控研究
  • 批准号:
    52308066
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

分子動力学計算と連続体計算の協働で紐解く界面活性剤添加による乱流抑制の物理機構
通过分子动力学和连续介质计算的协作揭示添加表面活性剂抑制湍流的物理机制
  • 批准号:
    24KJ0109
    24KJ0109
  • 财政年份:
    2024
  • 资助金额:
    $ 4.66万
    $ 4.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
    Grant-in-Aid for JSPS Fellows
Clarification of Energy Mechanisms in Supercritical Accretion Flows on to Neutron Stars through Hydrodynamics and Radiative Transfer Simulations
通过流体动力学和辐射传输模拟阐明中子星超临界吸积流的能量机制
  • 批准号:
    22KJ0368
    22KJ0368
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
    $ 4.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
    Grant-in-Aid for JSPS Fellows
Dynamics of high-energy nuclear collisions based on core-corona picture and transport properties of QGP
基于核日冕图和QGP输运特性的高能核碰撞动力学
  • 批准号:
    23K03395
    23K03395
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
    $ 4.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Improving the efficiency of light to kinetic energy conversion by pulse shaping of laser pulses that generate bubbles.
通过对产生气泡的激光脉冲进行脉冲整形,提高光到动能的转换效率。
  • 批准号:
    23K03279
    23K03279
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
    $ 4.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Spin measurement of supermassive black holes and verification of rotational-energy extraction mechanism via magnetic field
超大质量黑洞的自旋测量以及通过磁场验证旋转能量提取机制
  • 批准号:
    23H00117
    23H00117
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
    $ 4.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
    Grant-in-Aid for Scientific Research (A)