Advanced Thermal Barrier Coating Systems for Gas Turbine Application: Microstructure, Properties, and Performance
适用于燃气轮机应用的先进热障涂层系统:微观结构、特性和性能
基本信息
- 批准号:RGPIN-2015-05862
- 负责人:
- 金额:$ 5.1万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the aerospace and power generation industries, demands to reduce fuel consumption, operating costs, and greenhouse gas emissions continue to push gas turbine engine (GTE) designers to find ways to improve GTE efficiency and extend operating lives. Increasing the turbine inlet temperature is a key way to increase power output without increasing fuel burn. With rising turbine inlet temperatures, demands for continuous operation under harsh environments, and a shift towards alternative fuels, hot section materials are being subjected to increased mechanical stresses and environmental attack. While state-of-the-art superalloys used to manufacture turbine blades, vanes, and combustion components can maintain strength at temperatures up to 1093°C (2000°F), most current and all next generation GTE designs require materials that can safely operate well beyond this temperature. This is only possible with the use of thermal barrier coating (TBC) systems and cooling technology. In addition, many modern superalloys have reduced environmental resistance due to lower Cr content, done to stabilize the microstructure under higher temperatures and mechanical loads. Therefore, TBCs are now required to provide both thermal barrier and environmental protection functions, and have become integral to modern GTEs. With the industry's goal to designate TBCs as a "prime reliant" in GTE design, further TBC performance improvement and reliability are needed.Major challenges GTE designers face include: lack of understanding of substrate influence on TBC life; the existence of inward and outward diffusion of elements during GTE operation leading to early coating failure; insufficient temperature and fracture resistance of ceramic top coat materials; and lack of a universal approach to predict TBC failure mechanism(s) and life based on microstructure and service condition. Therefore, the objectives of this research program are to explore new TBC materials and structures for improved performance, to understand the microstructure evolution and failure mode(s) under different service conditions, and to enable TBC life assessment.The outcomes of this research will include new coating material compositions and structures with enhanced durability, a coating design and selection protocol for different turbine blade substrate materials and operating conditions, and a tool to accurately predict TBC system life. This research will also enhance the understanding of coating and substrate interaction under extreme mechanical and environmental conditions and provide training to HQPs. Finding more durable coating compositions and structures will directly benefit Canadian OEMs (such as Pratt & Whitney Canada, Magellan Aerospace), gas turbine users (TransCanada Pipelines, Union Gas) and coating providers (MDS Coating Technologies, Liburdi Turbine Services, Northwest Mettech).
在航空航天和发电行业,降低燃料消耗、运营成本和温室气体排放的需求不断推动燃气涡轮发动机 (GTE) 设计人员寻找提高 GTE 效率和延长运行寿命的方法。随着涡轮机入口温度的升高、在恶劣环境下连续运行的要求以及向替代燃料的转变,热部件材料在使用过程中会受到越来越大的机械应力和环境影响。 -最先进的用于制造涡轮机叶片、轮叶和燃烧部件的高温合金可以在高达 1093°C (2000°F) 的温度下保持强度,大多数当前和所有下一代 GTE 设计都需要能够在远高于此温度的情况下安全运行的材料。通过使用热障涂层 (TBC) 系统和冷却技术,许多现代高温合金由于铬含量较低而降低了耐环境性,从而在较高温度和机械载荷下稳定微观结构。现在需要提供热障和环境保护功能,并且已成为现代 GTE 的组成部分。随着业界将 TBC 指定为 GTE 设计中的“主要依赖”的目标,需要进一步提高 TBC 的性能和可靠性。GTE 面临的主要挑战。设计人员面临的问题包括:缺乏对基材对 TBC 寿命影响的了解;GTE 操作过程中元素向内和向外扩散导致陶瓷面涂层材料的早期失效;以及缺乏通用的解决方法;预测基于微观结构和使用条件的 TBC 失效机制和寿命因此,本研究项目的目标是探索新的 TBC 材料和结构以提高性能,了解不同使用条件下的微观结构演变和失效模式。 ,并实现 TBC 寿命评估。这项研究的成果将包括具有增强耐用性的新型涂层材料成分和结构、针对不同涡轮叶片基材材料和操作条件的涂层设计和选择协议,以及准确预测 TBC 系统寿命的工具这项研究也将增进对涂层的理解和。极端机械和环境条件下的基材相互作用,并为总部提供培训,寻找更耐用的涂层组合物和结构将直接使加拿大原始设备制造商(例如普惠加拿大公司、麦哲伦航空航天公司)、燃气轮机用户(加拿大横贯管道公司、联合天然气公司)和涂层公司受益。供应商(MDS Coating Technologies、Liburdi Turbine Services、Northwest Mettech)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huang, Xiao其他文献
Photochemically Controlled Synthesis of Anisotropic Au Nanostructures: Platelet-like Au Nanorods and Six-Star Au Nanoparticles
- DOI:
10.1021/nn101803m - 发表时间:
2010-10-01 - 期刊:
- 影响因子:17.1
- 作者:
Huang, Xiao;Qi, Xiaoying;Zhang, Hua - 通讯作者:
Zhang, Hua
Light-activated RNA interference in human embryonic stem cells
- DOI:
10.1016/j.biomaterials.2015.06.006 - 发表时间:
2015-09-01 - 期刊:
- 影响因子:14
- 作者:
Huang, Xiao;Hu, Qirui;Reich, Norbert O. - 通讯作者:
Reich, Norbert O.
Reduction/immobilization of chromite ore processing residue using composite materials based geopolymer coupled with zero-valent iron
使用基于地质聚合物的复合材料与零价铁结合来还原/固定铬铁矿加工残留物
- DOI:
10.1016/j.ceramint.2017.11.148 - 发表时间:
2018-02-15 - 期刊:
- 影响因子:5.2
- 作者:
Huang, Xiao;Muhammad, Faheem;Li, Dongwei - 通讯作者:
Li, Dongwei
A multiple crop model ensemble for improving broad-scale yield prediction using Bayesian model averaging
使用贝叶斯模型平均改进大规模产量预测的多种作物模型集成
- DOI:
10.1016/j.fcr.2017.06.011 - 发表时间:
2017-09-01 - 期刊:
- 影响因子:5.8
- 作者:
Huang, Xiao;Huang, Guorui;Yu, Le - 通讯作者:
Yu, Le
Structural and functional brain alterations in obstructive sleep apnea: a multimodal meta-analysis
- DOI:
10.1016/j.sleep.2018.09.025 - 发表时间:
2019-02-01 - 期刊:
- 影响因子:4.8
- 作者:
Huang, Xiao;Tang, Shi;Chen, Xiaoping - 通讯作者:
Chen, Xiaoping
Huang, Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huang, Xiao', 18)}}的其他基金
Design, Operations and Pricing Issues in Omnichannel Retailing
全渠道零售中的设计、运营和定价问题
- 批准号:
RGPIN-2022-04671 - 财政年份:2022
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Advanced Thermal Barrier Coating Systems for Gas Turbine Application: Microstructure, Properties, and Performance
适用于燃气轮机应用的先进热障涂层系统:微观结构、特性和性能
- 批准号:
RGPIN-2015-05862 - 财政年份:2021
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Managing flexibility in downstream supply chains
管理下游供应链的灵活性
- 批准号:
402324-2011 - 财政年份:2019
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Particulate Matter Characterization and Coating Microstructure Investigation from a Laser - Paint Removal - System
激光除漆系统的颗粒物表征和涂层微观结构研究
- 批准号:
533143-2018 - 财政年份:2018
- 资助金额:
$ 5.1万 - 项目类别:
Engage Grants Program
Advanced Thermal Barrier Coating Systems for Gas Turbine Application: Microstructure, Properties, and Performance
适用于燃气轮机应用的先进热障涂层系统:微观结构、特性和性能
- 批准号:
RGPIN-2015-05862 - 财政年份:2018
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Managing flexibility in downstream supply chains
管理下游供应链的灵活性
- 批准号:
402324-2011 - 财政年份:2018
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Development of a new fatigue test protocol and fatigue performance evaluation of Al-to-Al adhesive bond with GRIP MetalTM technology
使用 GRIP MetalTM 技术开发新的疲劳测试协议并评估铝对铝粘合的疲劳性能
- 批准号:
492472-2015 - 财政年份:2016
- 资助金额:
$ 5.1万 - 项目类别:
Engage Grants Program
Advanced Thermal Barrier Coating Systems for Gas Turbine Application: Microstructure, Properties, and Performance
适用于燃气轮机应用的先进热障涂层系统:微观结构、特性和性能
- 批准号:
RGPIN-2015-05862 - 财政年份:2016
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Managing flexibility in downstream supply chains
管理下游供应链的灵活性
- 批准号:
402324-2011 - 财政年份:2015
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Advanced Thermal Barrier Coating Systems for Gas Turbine Application: Microstructure, Properties, and Performance
适用于燃气轮机应用的先进热障涂层系统:微观结构、特性和性能
- 批准号:
RGPIN-2015-05862 - 财政年份:2015
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
tRFs-Gly在猪热应激诱导睾丸生精障碍中的作用机制研究
- 批准号:32302689
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于设施三七连作障碍的红壤土崩解及蒸汽热风消毒热质传递机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
褪黑素对热应激条件下山羊精子发生障碍的保护作用及机制研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
基于红外热成像技术及SCF/c-kit/ICC信号通路探讨“以俞调枢”法改善胃肠动力的作用机制
- 批准号:81403383
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于“冷”“热”执行功能损伤的述情障碍者神经机制研究
- 批准号:81301176
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Advanced Thermal Barrier Coating Systems for Gas Turbine Application: Microstructure, Properties, and Performance
适用于燃气轮机应用的先进热障涂层系统:微观结构、特性和性能
- 批准号:
RGPIN-2015-05862 - 财政年份:2021
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Advanced Thermal Barrier Coating Systems for Gas Turbine Application: Microstructure, Properties, and Performance
适用于燃气轮机应用的先进热障涂层系统:微观结构、特性和性能
- 批准号:
RGPIN-2015-05862 - 财政年份:2018
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Advanced Thermal Barrier Coating Systems for Gas Turbine Application: Microstructure, Properties, and Performance
适用于燃气轮机应用的先进热障涂层系统:微观结构、特性和性能
- 批准号:
RGPIN-2015-05862 - 财政年份:2016
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Advanced Thermal Barrier Coating Systems for Gas Turbine Application: Microstructure, Properties, and Performance
适用于燃气轮机应用的先进热障涂层系统:微观结构、特性和性能
- 批准号:
RGPIN-2015-05862 - 财政年份:2015
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
NSF/DOE Partnership on Advanced Combustion Engines: Thermal Barrier Coatings for the LTC Engine - Heat Loss, Combustion, Thermal vs. Catalytic Effects, Emissions, Exhaust Heat
NSF/DOE 高级内燃机合作伙伴关系:LTC 发动机的热障涂层 - 热损失、燃烧、热效应与催化效应、排放、废热
- 批准号:
1258714 - 财政年份:2013
- 资助金额:
$ 5.1万 - 项目类别:
Continuing Grant