Dirichlet Forms and Stochastic Analysis

狄利克雷形式和随机分析

基本信息

  • 批准号:
    RGPIN-2018-04394
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The Dirichlet form theory is one of the most active areas of modern probability theory and stochastic processes.It establishes a bridge between analysis and probability, and the benefits flow in both directions. This proposedresearch program is devoted to performing theoretical research in Dirichlet forms and related stochastic analysis.We will focus on four important problems.1) Hunt's hypothesis (H) and Getoor's conjecture. Hunt's hypothesis (H) plays a crucial role in probabilistic potential theory. It is well-known that any Markov process associated with a semi-Dirichletform essentially satisfies (H). However, there lacks powerful characterization in literature regarding the validity of(H) for general Markov processes. In particular, Getoor's conjecture that essentially all Levy processes satisfy(H) still remains unsolved. Based on the papers that we published in recent years, we hope wecan completely solve Getoor's conjecture and give an explicit criterion on the validity of (H) for general Markovprocesses.2) Construction of the two-parameter Fleming-Viot process. The two-parameter Dirichlet process has a lot ofapplications in mathematical population genetics and Bayesian nonparametric statistics. Through the efforts of many researchers, peoplenow have good understanding of its various properties. However, people still do not know much about itsassociated dynamic model. Construction of the two-parameter Fleming-Viot process with a general state space is a challenging openproblem in the area of combinatorial probability. We expect to solve this problem based on our own workand other references published in recent years.3) Large deviations for non-symmetricMarkov processes. Takeda and his collaborators have systematically developed the Donsker-Varadhantype large deviation principle for time reversible Markov processes. However, not many results have been obtained for the non-symmetriccase. By virtue of recent results onstochastic calculus of Markov processes associated with semi-Dirichlet forms and generalized Feynman-Kac semigroups, we expect to obtain the largedeviation principle for the occupation time distributions of general non-symmetricMarkov processes with generalized Feynman-Kac functionals and extend some remarkable results of Takeda's group to the framework ofsemi-Dirichletforms. 4) Boundary value problems with non-local operators and singular nonlinearities. In recent years, people have used probabilistic approach to study various boundary valueproblems. In this project, we will use the Dirichlet form theory to consider the boundary value problem for avery general class of non-symmetric and nonlocal operators with singular nonlinearities. We expect to establish the existence, uniqueness, and regularity of solutions to the boundary value problem as well as the probabilistic representation of the solutions.
狄利克雷形式理论是现代概率论和随机过程最活跃的领域之一,它在分析和概率之间架起了一座桥梁,效益双向流动。本研究计划致力于狄利克雷形式和相关随机分析的理论研究。我们将重点关注四个重要问题:1)亨特假设(H)和格托尔猜想。亨特假设(H)在概率势论中起着至关重要的作用。众所周知,任何与半狄利克雷形式相关的马尔可夫过程本质上都满足(H)。然而,文献中缺乏关于 (H) 对于一般马尔可夫过程的有效性的有力表征。特别是,Getoor 的猜想(基本上所有 Levy 过程都满足(H))仍未得到解决。基于我们近年来发表的论文,我们希望能够彻底解决Getoor猜想,并对一般马尔可夫过程的(H)的有效性给出明确的判据。2)二参数Fleming-Viot过程的构造。双参数狄利克雷过程在数学群体遗传学和贝叶斯非参数统计中有大量应用。经过许多研究人员的努力,人们现在对其各种性质有了很好的了解。然而,人们对其相关的动力学模型仍然知之甚少。构造具有一般状态空间的二参数 Fleming-Viot 过程是组合概率领域中一个具有挑战性的开放问题。我们希望根据我们自己的工作和近年来发表的其他参考文献来解决这个问题。3)非对称马尔可夫过程的大偏差。武田和他的合作者系统地开发了时间可逆马尔可夫过程的 Donsker-Varadhan 型大偏差原理。然而,对于非对称情况,获得的结果并不多。凭借与半狄利克雷形式和广义Feynman-Kac半群相关的马尔可夫过程的随机微积分的最新成果,我们期望获得具有广义Feynman-Kac泛函的一般非对称马尔可夫过程的占用时间分布的大偏差原理,并推广一些Takeda团队在半狄利克雷形式框架上取得了显着的成果。 4) 非局部算子和奇异非线性的边值问题。近年来,人们利用概率方法来研究各种边值问题。在本项目中,我们将使用狄利克雷形式理论来考虑具有奇异非线性的非对称和非局部算子的一般类别的边值问题。我们期望建立边值问题解的存在性、唯一性和规律性以及解的概率表示。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sun, Wei其他文献

Transverse vibration of flexible hoisting rope with time-varying length
柔性提升绳随长度变化的横向振动
Novel robust image watermarking based on subsampling and DWT
基于子采样和DWT的新型鲁棒图像水印
  • DOI:
    10.1007/s11042-011-0794-1
  • 发表时间:
    2012-09
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Lu, Wei;Sun, Wei;Lu, Hongtao
  • 通讯作者:
    Lu, Hongtao
Radiomics Signatures of Computed Tomography Imaging for Predicting Risk Categorization and Clinical Stage of Thymomas
  • DOI:
    10.1155/2019/3616852
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Xihai;Sun, Wei;Lu, Zaiming
  • 通讯作者:
    Lu, Zaiming
Application of a hydroxyl functionalized ionic liquid modified electrode for the sensitive detection of adenosine-5′-monophosphate
  • DOI:
    10.1016/j.jelechem.2011.10.018
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Gao, Hongwei;Xi, Mengying;Sun, Wei
  • 通讯作者:
    Sun, Wei
An electrochemical biosensor based on Nafion-ionic liquid and a myoglobin-modified carbon paste electrode
基于Nafion离子液体和肌红蛋白修饰碳糊电极的电化学生物传感器
  • DOI:
    10.1016/j.electacta.2009.11.052
  • 发表时间:
    2010-02
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Zhao, Ruijun;Li, Xiaoqing;Jiao, Kui;Sun, Xiaoying;Sun, Wei;Wang, Yan;Zhao, Changzhi
  • 通讯作者:
    Zhao, Changzhi

Sun, Wei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sun, Wei', 18)}}的其他基金

Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
  • 批准号:
    RGPIN-2018-04394
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
  • 批准号:
    RGPIN-2018-04394
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
  • 批准号:
    RGPIN-2018-04394
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
  • 批准号:
    RGPIN-2018-04394
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
  • 批准号:
    311945-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
  • 批准号:
    311945-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
  • 批准号:
    311945-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
  • 批准号:
    311945-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
  • 批准号:
    311945-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear filtering and stochastic analysis
非线性滤波和随机分析
  • 批准号:
    311945-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于复用分析的电子表格计算语义错误检测技术研究
  • 批准号:
    61702490
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
版式文档中复杂异构对象的识别技术研究
  • 批准号:
    61573028
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
开放的选择性BIM概念下的住宅节能可视化计算研究
  • 批准号:
    51408412
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
面向城市生态系统高异质性地表格局的LULC信息提取研究
  • 批准号:
    41201093
  • 批准年份:
    2012
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
计数组合学理论与应用
  • 批准号:
    10801022
  • 批准年份:
    2008
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
  • 批准号:
    RGPIN-2018-04394
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
  • 批准号:
    RGPIN-2018-04394
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
  • 批准号:
    RGPIN-2018-04394
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
  • 批准号:
    RGPIN-2018-04394
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
  • 批准号:
    311945-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了