Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
基本信息
- 批准号:RGPIN-2018-06371
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The theory of stochastic homogenization identifies the average, macroscopic behavior of a phenomenon which is subject to microscopic, random effects. For example, one may be interested in determining the general properties of a porous material with randomly distributed impurities, or predicting the evolution of a population in a heterogeneous medium with random obstacles. Such phenomena are typically modeled by partial differential equations (PDEs) with random coefficients which depend on microscopic lengthscales describing the heterogeneities. The random coefficients take into account all possible realizations of a physical environment, and by imposing certain hypotheses, one may expect that asymptotically on average, almost all such solutions exhibit the same effective behavior. The main goal of this proposal is to further the general understanding of elliptic and parabolic PDEs through the rich source of problems based in stochastic homogenization. The study of homogenization offers contributions to both theoretical and applied mathematics: homogenization often exposes many interesting problems in the analysis of the relevant equations, and it can be directly used to model physical processes. I plan to focus my efforts on two main classes of elliptic and parabolic PDEs: (a) Nondivergence Form Equations, and (b) Reaction-Diffusion Equations. Such equations serve as the primary mathematical models in stochastic control theory, finance, and geometry and chemical kinetics, combustion, and biology respectively. The projects I am proposing are motivated by the following two objectives: (1) To broaden the class of PDEs for which homogenization takes place and (2) To obtain more specific information about the process of homogenization, such as error estimates and properties of the effective behavior. The study of homogenization combines tools from several different areas of mathematics, including analysis, PDEs, dynamical systems, and probability. I am committed to using collaborative approaches for the proposed research program; drawing inspiration and techniques from various subfields. This flexible perspective promotes a unified understanding of the physical phenomena, as well as enhancing the theory for both nondivergence form and reaction-diffusion equations. Furthermore, progress in this specific research program may influence developments in the above related areas of mathematics.Aside from the immediate applications to other subfields of mathematics, the study of multiscale problems has been a source of interest for specialists in several outside areas including materials science, chemical engineering, and biology. Consequently, this work contributes towards strengthening the relationship between the mathematical theory of PDEs and applications to other scientific disciplines.
随机均质化理论确定了受微观随机效应影响的现象的平均宏观行为。例如,人们可能对确定具有随机分布的杂质的多孔材料的一般性质感兴趣,或者预测具有随机障碍物的异质介质中群体的演化。此类现象通常通过具有随机系数的偏微分方程 (PDE) 进行建模,这些随机系数取决于描述异质性的微观长度尺度。随机系数考虑了物理环境的所有可能实现,并且通过施加某些假设,人们可以预期,平均而言,几乎所有此类解决方案都表现出相同的有效行为。 该提案的主要目标是通过基于随机均质化的丰富问题来源,进一步加深对椭圆和抛物线偏微分方程的一般理解。均质化的研究对理论和应用数学都做出了贡献:均质化经常在相关方程的分析中暴露出许多有趣的问题,并且它可以直接用于模拟物理过程。我计划将精力集中在椭圆形和抛物线偏微分方程的两大类上:(a) 非散度形式方程,以及 (b) 反应扩散方程。这些方程分别作为随机控制理论、金融学、几何学以及化学动力学、燃烧和生物学的主要数学模型。我提议的项目是出于以下两个目标:(1)扩大发生均质化的偏微分方程的类别;(2)获得有关均质化过程的更具体的信息,例如误差估计和偏微分方程的性质有效的行为。均质化研究结合了多个不同数学领域的工具,包括分析、偏微分方程、动力系统和概率。我致力于在拟议的研究计划中使用协作方法;从各个子领域汲取灵感和技术。这种灵活的视角促进了对物理现象的统一理解,并增强了非发散方程和反应扩散方程的理论。此外,该特定研究计划的进展可能会影响上述数学相关领域的发展。除了直接应用于数学的其他子领域之外,多尺度问题的研究也引起了包括材料科学在内的多个外部领域的专家的兴趣。 、化学工程和生物学。因此,这项工作有助于加强偏微分方程数学理论与其他科学学科应用之间的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lin, Jessica其他文献
Modeling the glucose regulatory system in extreme preterm infants
- DOI:
10.1016/j.cmpb.2010.05.006 - 发表时间:
2011-06-01 - 期刊:
- 影响因子:6.1
- 作者:
Le Compte, Aaron;Chase, J. Geoffrey;Lin, Jessica - 通讯作者:
Lin, Jessica
The Health Status of Street Children and Youth in Low- and Middle-Income Countries: A Systematic Review of the Literature
- DOI:
10.1016/j.jadohealth.2013.03.013 - 发表时间:
2013-09-01 - 期刊:
- 影响因子:7.6
- 作者:
Woan, Jessica;Lin, Jessica;Auerswald, Colette - 通讯作者:
Auerswald, Colette
GrammarViz 2.0: A tool for grammar-based pattern discovery in time series
- DOI:
10.1007/978-3-662-44845-8_37 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:0
- 作者:
Senin, Pavel;Lin, Jessica;Lerner, Manfred - 通讯作者:
Lerner, Manfred
Developing a platform to evaluate and assess the security of wearable devices
- DOI:
10.1016/j.dcan.2018.10.009 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:7.9
- 作者:
Hale, Matthew L.;Lotfy, Kerolos;Lin, Jessica - 通讯作者:
Lin, Jessica
SAX-EFG: An Evolutionary Feature Generation Framework for Time Series Classification
- DOI:
10.1145/2576768.2598321 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:0
- 作者:
Kamath, Uday;Lin, Jessica;De Jong, Kenneth - 通讯作者:
De Jong, Kenneth
Lin, Jessica的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lin, Jessica', 18)}}的其他基金
Partial Differential Equations and Probability
偏微分方程和概率
- 批准号:
CRC-2018-00154 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Canada Research Chairs
Partial Differential Equations And Probability
偏微分方程和概率
- 批准号:
CRC-2018-00154 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Canada Research Chairs
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Partial Differential Equations and Probability
偏微分方程和概率
- 批准号:
CRC-2018-00154 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Canada Research Chairs
Partial Differential Equations and Probability
偏微分方程和概率
- 批准号:
CRC-2018-00154 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Canada Research Chairs
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
DGECR-2018-00073 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
低对称性椭圆形磁性纳米线的制备与磁性研究
- 批准号:12275114
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
塑料排水板地基精细固结理论及优化设计方法
- 批准号:51878185
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
椭圆形FRP-混凝土-钢双壁空心管柱力学性能及设计方法研究
- 批准号:51778102
- 批准年份:2017
- 资助金额:62.0 万元
- 项目类别:面上项目
一些椭圆形方程反问题的Tikhonov正则化方法的收敛速度
- 批准号:11701205
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
椭圆形FRP-混凝土-钢组合空心柱的截面优化和抗震性能研究
- 批准号:51608263
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
DGECR-2018-00073 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Launch Supplement