Theory and methods in mathematical and computational finance
数学和计算金融的理论和方法
基本信息
- 批准号:RGPIN-2021-04112
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The focus of the proposed research program is on fundamental problems, stochastic modelling, and statistical learning methods in mathematical and computational finance. The solution of many theoretical and applied problems in mathematical and computational finance often requires the creation of new stochastic modelling approaches and statistical methodology. The research program considers the development of new statistical and machine learning methods that incorporate underlying geometric properties of models and that are reflected in improved performance when applied to nonlinear data. A long-term objective is to develop of a flexible new meta-algorithm, called non-Euclidean upgrading, that embeds universal approximation properties into a wide variety of classical statistical techniques and machine learning algorithms. The research program also includes the development of new stochastic factor models for the term-structure of interest rates, credit-risk, volatility that are arbitrage-free and better capture the observed nonlinear features of the data. We shall also investigate new approaches to the theory, applications, and numerical solution of forward-backward stochastic differential equations. The expected outcomes of this program of research are novel methods in statistical learning, machine learning algorithms, and quantitative finance that are applicable to real data. The efficiency and competitiveness of the Canadian financial sector depends on the availability of a large and diverse pool of highly qualified personnel with training in quantitative finance, data-driven research, statistical theory, machine learning algorithms, and relevant industrial experience. The research program will train highly qualified personal on innovative methods and important applications and allow them to enter industrial or academic careers with the necessary skills.
关于基本问题,随机建模和统计学习方法的拟议研究计划的重点当应用于非线性数据时,会反映出一个长期目标。利益的术语结构是无套利的,是数据的套利和更好的非线性特征。 FE加拿大的财务取决于量化量的高度合格人员,并通过定量财务培训ATA驱动的研究,统计理论,机器学习算法和相关的工业经验。以及重要的应用程序,并允许他们进入或具有必要技能的学术职业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyndman, Cody其他文献
Deep Arbitrage-Free Learning in a Generalized HJM Framework via Arbitrage-Regularization
- DOI:
10.3390/risks8020040 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:2.2
- 作者:
Kratsios, Anastasis;Hyndman, Cody - 通讯作者:
Hyndman, Cody
Hyndman, Cody的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyndman, Cody', 18)}}的其他基金
Theory and methods in mathematical and computational finance
数学和计算金融的理论和方法
- 批准号:
RGPIN-2021-04112 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Stochastic modelling in mathematical and computational finance
数学和计算金融中的随机建模
- 批准号:
RGPIN-2015-04125 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Stochastic modelling in mathematical and computational finance
数学和计算金融中的随机建模
- 批准号:
RGPIN-2015-04125 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Stochastic modelling in mathematical and computational finance
数学和计算金融中的随机建模
- 批准号:
RGPIN-2015-04125 - 财政年份:2017
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Stochastic modelling in mathematical and computational finance
数学和计算金融中的随机建模
- 批准号:
RGPIN-2015-04125 - 财政年份:2016
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Stochastic modelling in mathematical and computational finance
数学和计算金融中的随机建模
- 批准号:
RGPIN-2015-04125 - 财政年份:2015
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Stochastic dynamics in financial modeling
金融建模中的随机动力学
- 批准号:
341777-2010 - 财政年份:2014
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Stochastic dynamics in financial modeling
金融建模中的随机动力学
- 批准号:
341777-2010 - 财政年份:2013
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Stochastic dynamics in financial modeling
金融建模中的随机动力学
- 批准号:
341777-2010 - 财政年份:2012
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Stochastic dynamics in financial modeling
金融建模中的随机动力学
- 批准号:
341777-2010 - 财政年份:2011
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
癌症耐药复发动力学的数学理论与方法
- 批准号:12331018
- 批准年份:2023
- 资助金额:193 万元
- 项目类别:重点项目
复杂数据分析中的数学理论与方法研究天元数学高级研讨班
- 批准号:
- 批准年份:2022
- 资助金额:20 万元
- 项目类别:
含时变阶数分数阶扩散方程中反问题的数学理论分析和数值计算方法
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
数控加工中的数学机械化理论与方法
- 批准号:12271516
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
基于张量结构建模与深度学习的图像相位恢复:数学理论与方法
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Fractionated photoimmunotherapy to harness low-dose immunostimulation in ovarian cancer
分段光免疫疗法利用低剂量免疫刺激治疗卵巢癌
- 批准号:
10662778 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
- 批准号:
10736507 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Anatomical and functional imaging of the conventional outflow pathway
传统流出通道的解剖和功能成像
- 批准号:
10752459 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Mathematical modeling for optimal control of BK virus infection in kidney transplant recipients
肾移植受者 BK 病毒感染最佳控制的数学模型
- 批准号:
10741703 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Extending experimental evolutionary game theory in cancer in vivo to enable clinical translation: integrating spatio-temporal dynamics using mathematical modeling
扩展癌症体内实验进化博弈论以实现临床转化:使用数学建模整合时空动力学
- 批准号:
10662098 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别: