Arithmetic and topology of moduli spaces

模空间的算术和拓扑

基本信息

  • 批准号:
    RGPIN-2019-05264
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The mathematical landscape is divided into three big areas: algebra, analysis and geometry. Algebraic geometry is situated between algebra and geometry, and is concerned with the study of solutions of systems of polynomial equations in several variables. As the number of solutions is usually infinite, one can rarely compute all of them, and instead contents oneself with an understanding of the geometric shape formed by the ensemble of solutions. This is what we call an algebraic variety. It is the principal object of interest in algebraic geometry. Applications of this theory are wide-ranging: a special case, known as elliptic curves, plays a crucial role in the implementation of modern cryptography systems. Algebraic geometry also prominently appears in physics: string theory predicts that the four dimensions of space and time are supplemented by 6 extra dimensions which are curled up in the shape of a tiny algebraic variety (known as Calabi-Yau varieties). This project is devoted to the study of algebraic varieties known as moduli spaces. Rather than arising as the set of solutions to an explicit system of equations, each point of a moduli space represents a fixed type of mathematical objects, and describes its variations and deformations. Due to this geometric interpretation, the theory of moduli spaces is extremely rich and leads to beautiful applications in other areas of mathematics. We will study moduli spaces arising in algebraic geometry through tools provided by number theory. This allows us to confirm predictions originating in mathematical physics, in particular string theory. One of the main protagonists in my research is the moduli space of Higgs bundles. Together with my collaborators Dimitri Wyss and Paul Ziegler we proved a conjecture by Hausel and Thaddeus which relates the geometry of two such moduli spaces, related by Langlands duality. Their prediction was heavily influenced by mirror symmetry (a phenomenon observed in string theory), but our proof provides an entirely arithmetic approach. In a sequel to our proof of the Hausel-Thaddeus conjecture, we reverse the flow of ideas: our methods are used to give a new and elementary proof of the fundamental lemma (proven by Ngô in 2008). The latter is central to the Langlands programme, and hence to modern day understanding of number theory. In future work I will continue to explore this exciting connection between number theory, algebraic geometry and physics.
数学景观分为三大领域:代数、分析和几何,代数几何位于代数和几何之间,涉及多变量多项式方程组的解的研究,因为解的数量通常是无限的。 ,人们很少能够计算出所有这些,而是​​满足于理解由解的集合形成的几何形状,这就是我们所说的代数簇,它是代数几何的应用的主要对象。该理论范围广泛:一种特殊情况,称为椭圆曲线,在现代密码系统的实现中发挥着至关重要的作用。代数几何在物理学中也占有重要地位:弦理论预测空间和时间的四个维度被补充。 6 个额外维度以微小的代数簇(称为 Calabi-Yau 簇)的形式卷曲。该项目致力于研究称为模空间的代数簇。模空间的每个点代表一种固定类型的数学对象,并描述其变化和变形,由于这种几何解释,模空间的理论极其丰富,并在数学中得到了很好的应用。我们将通过数论提供的工具来研究代数几何中出现的模空间,这使我们能够证实源自数学物理学,特别是弦理论的预测。希格斯我们与我的合作者 Dimitri Wyss 和 Paul Ziegler 一起证明了 Hausel 和 Thaddeus 的一个猜想,该猜想将两个这样的模空间的几何关系与朗兰兹对偶性联系起来。他们的预测很大程度上受到镜像对称(弦理论中观察到的现象)的影响。 ,但我们的证明提供了一种完全算术的方法,在豪塞尔-撒迪厄斯猜想的证明的后续部分,我们扭转了思路:我们的方法用于给出新的和基本引理的基本证明(由 Ngô 于 2008 年证明),后者是朗兰兹纲领的核心,因此也是现代数论理解的核心。在未来的工作中,我将继续探索数论和代数几何之间的这种令人兴奋的联系。和物理学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Groechenig, Michael其他文献

A generalized Contou-Carrère symbol and its reciprocity laws in higher dimensions
广义 Contou-Carrère 符号及其高维互易律
  • DOI:
    10.1090/btran/81
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Braunling, Oliver;Groechenig, Michael;Wolfson, Jesse
  • 通讯作者:
    Wolfson, Jesse
The A∞-structure of the index map
索引图的 A 结构
  • DOI:
    10.2140/akt.2018.3.581
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Bräunling, Oliver;Groechenig, Michael;Wolfson, Jesse
  • 通讯作者:
    Wolfson, Jesse

Groechenig, Michael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Groechenig, Michael', 18)}}的其他基金

Arithmetic and topology of moduli spaces
模空间的算术和拓扑
  • 批准号:
    RGPIN-2019-05264
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic and topology of moduli spaces
模空间的算术和拓扑
  • 批准号:
    RGPIN-2019-05264
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic and topology of moduli spaces
模空间的算术和拓扑
  • 批准号:
    RGPIN-2019-05264
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic and topology of moduli spaces
模空间的算术和拓扑
  • 批准号:
    DGECR-2019-00159
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

瞬态高温环境下力学承载-防隔热一体化结构拓扑优化方法研究
  • 批准号:
    12302148
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
随机非线性复杂系统的拓扑结构及其在交叉学科中的应用
  • 批准号:
    12375034
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
碳的拓扑物性与晶体结构关系的理论研究
  • 批准号:
    12304087
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于expander方法的三类图结构(拓扑子式、浸入、图子式)嵌入问题研究
  • 批准号:
    12301447
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于木质纳米纤维素基元的仿生拓扑结构Si3N4陶瓷的多尺度序构及强韧化机制
  • 批准号:
    52372068
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Arithmetic and topology of moduli spaces
模空间的算术和拓扑
  • 批准号:
    RGPIN-2019-05264
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic and topology of moduli spaces
模空间的算术和拓扑
  • 批准号:
    RGPIN-2019-05264
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic and topology of moduli spaces
模空间的算术和拓扑
  • 批准号:
    RGPIN-2019-05264
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic and topology of moduli spaces
模空间的算术和拓扑
  • 批准号:
    DGECR-2019-00159
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Launch Supplement
CAREER: Moduli of curves via topology, geometry, and arithmetic
职业:通过拓扑、几何和算术计算曲线模
  • 批准号:
    1350075
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了