Classical and A1-homotopy theory of linear algebraic groups

线性代数群的经典和A1-同伦论

基本信息

  • 批准号:
    RGPIN-2021-02603
  • 负责人:
  • 金额:
    $ 1.53万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

This project studies the interface between algebra and topology. We study the homotopy theory, i.e., the properties that do not change even after continuous deformations, of the symmetry groups of algebraic structures. The proposal is in two parts. The first is when the algebraic objects consist of vector spaces over a field k with no additional structure. In this case, the structure groups the general linear groups GLn, which are comprised of nxn invertible matrices. We study the A1-homotopy theory of GLn. A1-homotopy is a powerful way to define a homotopy theory of algebraically-defined objects. In this theory, first established in the late 1990s, one considers those deformations that may be defined by polynomial functions. In classical homotopy theory, much information about a space X is encoded in its homotopy groups: pi_n(X), which record the different homotopy-classes of continuous functions from spheres to X. In A1-homotopy, one may analogously define homotopy groups, but now the sense of homotopy is the A1-homotopy. The ordinary homotopy groups are difficult to calculate in most cases, and the A1-homotopy groups are even more difficult to determine. The A1-homotopy groups of GLn and related spaces encode subtle and mysterious information about the underlying field k, in the guise of the algebraic K-theory of k, and this proposal will calculate these homotopy groups in order to extract and make sense of that information. We will gain insight into the way in which the theory of vector bundles over an algebraic-geometric object X relates to the algebraic K-theory of X. We will also learn more about the homotopy groups of the spheres themselves, since the group GLn is a symmetry group of the A1-homotopy sphere A^n-0. The second part of the proposal examines what happens when the vector space A has an additional structure, such as multiplication. A is then an algebra, a prevalent structure in mathematics. The symmetries G are restricted by the multiplication of A and are harder to understand than in the case where the multiplication was absent. There are particular geometric spaces associated to the data of (G,A): spaces parametrizing r-tuples of elements in A that are sufficient to generate the entire algebraic structure of A. These spaces are little-studied to date, but because they are algebraically defined, we may use algebraic techniques to examine their ordinary homotopy theory, facilitating a number of explicit calculations. In this way, we will cast light on the symmetry group G and on algebraic structures related to A. The project will use homotopy theory to deepen our fundamental knowledge about several different kinds of widely-used algebraic structures: algebras, algebras with involution, vector bundles on algebraic objects, and fields (through the K-theory). It will also tell us more about the topology of maps between spheres, which are the most fundamental topological objects but about which many questions remain unanswered.
该项目研究代数与拓扑之间的界面。我们研究了代数结构的对称基团,即使在连续变形后也不会改变的属性理论,即即使在连续变形之后也不会改变。该提议分为两个部分。 首先是代数对象由没有其他结构的场k上的矢量空间组成。在这种情况下,结构分组的一般线性基团GLN由NXN可逆矩阵组成。我们研究了GLN的A1-homotopicy理论。 A1-HOMOTOPY是定义代数定义对象的同质理论的有力方法。在这一理论中,最初是在1990年代后期建立的,人们考虑了可能由多项式函数定义的变形。在经典同质理论中,有关空间X的许多信息在其同型组中进行了编码:PI_N(X),它记录了从球到X的连续函数的不同同质类别的类别。在大多数情况下,普通同型组很难计算,并且A1-HOMOTOPY组更难确定。 GLN和相关空间的A1-HOMOTOPY组用代数K理论的幌子编码了有关基础域K的微妙而神秘的信息,该建议将计算这些同型组,以提取并了解该信息。我们将深入了解代数几何对象上的矢量捆绑理论与X的代数K理论有关。我们还将了解球体本身的同型群体群体,因为GLN组是A1-HOMOTOPY范围的对称组a^n-0。该提案的第二部分研究了矢量空间A具有附加结构(例如乘法)时会发生什么。然后,A是一个代数,这是数学中普遍的结构。与不存在乘法的情况下,对称g受A的乘法限制,并且难以理解。与(g,a)的数据相关的特定几何空间:在A中的参数为r-tubles的空间足以生成A. A的整个代数结构。这些空间迄今为止尚未研究,但是由于它们是代数定义的,我们可能会使用代数技术来研究其普通同型理论,并计算出一个数字。通过这种方式,我们将阐明与A的对称性组和代数结构有关。该项目将使用同型理论来加深我们对几种不同类型的广泛使用的代数结构的基本知识:代数,代数,参与度,参与,矢量套件,代数捆绑在代数的对象,以及ktheory(通过K-theory)。它还将告诉我们更多有关球之间地图拓扑的拓扑,这是最基本的拓扑对象,但许多问题仍然没有解决。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Williams, Thomas其他文献

Effects of exercise and anti-PD-1 on the tumour microenvironment
  • DOI:
    10.1016/j.imlet.2021.08.005
  • 发表时间:
    2021-09-05
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Buss, Linda A.;Williams, Thomas;Dachs, Gabi U.
  • 通讯作者:
    Dachs, Gabi U.
Critical Assessment of an Ocular Photoscreener
Multidisciplinary management of laryngeal pathology identified in patients with COVID-19 following trans-laryngeal intubation and tracheostomy
  • DOI:
    10.1177/17511437211034699
  • 发表时间:
    2022-11-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Boggiano, Sarah;Williams, Thomas;McGrath, Brendan A.
  • 通讯作者:
    McGrath, Brendan A.
Real-world experience of secukinumab treatment for ankylosing spondylitis at the Royal National Hospital for Rheumatic Diseases, Bath
  • DOI:
    10.1007/s10067-020-04944-5
  • 发表时间:
    2020-01-27
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Williams, Thomas;Wadeley, Alison;Sengupta, Raj
  • 通讯作者:
    Sengupta, Raj
Is a Total Hip Arthroplasty Stem in Varus a Risk Factor of Long-Term Mechanical Complication?
  • DOI:
    10.1016/j.arth.2022.12.025
  • 发表时间:
    2023-05-19
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Montbarbon, Baptiste;Letissier, Hoel;Williams, Thomas
  • 通讯作者:
    Williams, Thomas

Williams, Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Williams, Thomas', 18)}}的其他基金

Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
  • 批准号:
    RGPIN-2021-02603
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
  • 批准号:
    RGPIN-2016-03780
  • 财政年份:
    2020
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
  • 批准号:
    RGPIN-2016-03780
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
  • 批准号:
    RGPIN-2016-03780
  • 财政年份:
    2018
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
  • 批准号:
    RGPIN-2016-03780
  • 财政年份:
    2017
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
  • 批准号:
    RGPIN-2016-03780
  • 财政年份:
    2016
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

缺血性脑卒中后NDRG2通过STING/IFNβ信号轴抑制星形胶质细胞A1型极化的作用和机制研究
  • 批准号:
    82301548
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于肝脏腺苷A1受体调控的PKA-SCAP-SREBP1c通路研究知母皂苷AⅢ治疗NAFLD的分子机理
  • 批准号:
    82374129
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于外泌体miR-155介导NF-κB信号通路探讨百合地黄汤调控星形胶质细胞A1/A2活化和轴突再髓鞘化的作用机制研究
  • 批准号:
    82305079
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
Drp-1诱导星形胶质细胞A1型极化在脑出血后血脑屏障破坏中的机制研究
  • 批准号:
    82371384
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
从C3/C3aR通路调控“小胶质细胞-A1型星形胶质细胞串扰”探讨熄风解郁方干预dPD的机制
  • 批准号:
    82374430
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
  • 批准号:
    2405191
  • 财政年份:
    2024
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
  • 批准号:
    RGPIN-2021-02603
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
isogenic homotopy theory and its applications to geometry and derived algebraic geometry
等基因同伦理论及其在几何和派生代数几何中的应用
  • 批准号:
    15K04872
  • 财政年份:
    2015
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Higher Grothendieck-Witt groups and A1-homotopy theory
高等 Grothendieck-Witt 群和 A1 同伦理论
  • 批准号:
    EP/M001113/1
  • 财政年份:
    2015
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Research Grant
Classifying spaces of algebraic groups and A1-homotopy theory.
代数群的分类空间和 A1-同伦理论。
  • 批准号:
    245979342
  • 财政年份:
    2013
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了