Mathematical models for aggregation and self-collective behaviour

聚合和自我集体行为的数学模型

基本信息

  • 批准号:
    RGPIN-2018-04180
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The focus of the proposed research program is a theoretical and numerical investigation of mathematical models for aggregation/swarming phenomena. While such phenomena arise in a variety of areas, we are particularly interested in applications of aggregation models to population biology (chemotaxis of cells, swarming or flocking of animals), robotics and opinion formation.Various mathematical models exist in the literature, ranging from particle-based (ODE) to kinetic and continuum (PDE) descriptions. Most of these formulations lead to nonlinear and nonlocal differential equations which are challenging to analyze and simulate. The proposed research will concern extensions and generalizations of previous models for self-collective behaviour, as well as development and analysis of genuinely new models. A particular emphasis will be placed on the long time behaviour of the solutions and the resulting equilibrium configurations.An important class of aggregation models is described by an integro-differential equation for the evolution of the macroscopic density. The equation represents the active transport of the density by a velocity field that has a functional dependence on it, given by a convolution with an interaction potential. The model also has a corresponding discrete/ODE formulation. The interaction potential typically incorporates short-range repulsion and long-range attraction, and its properties are essential in the analysis and numerics of this class of equations. In addition to such interactions, the model may also include an external potential and/or diffusion terms. Both the discrete and the continuum models can be formulated as gradient flows of certain energy functionals; consequently, variational methods can be used to investigate their equilibria.Part of the proposed research will address various aspects related to this very general class of models that have been mostly overlooked so far: i) the role of boundaries and boundary conditions, ii) anisotropy (e.g., a limited perception field) and its effects, iii) models for multiple species, iv) aggregation on surfaces and manifolds. All aspects are very important in applications, but received little attention in the literature so far. We also plan to investigate several specific applications of aggregations models (e.g., to opinion formation and protein adsorption), as well as develop and study mathematically new models to address recent experimental observations on schooling fish.The proposed projects offer training opportunities for students with a variety of interests ranging from numerics and formal methods (asymptotics) to rigorous analysis. In addition, the projects can accommodate a wide range of skill levels, from unexperienced undergraduates to advanced PhD students and PDFs. The proposed program aims to advance basic mathematical research as well as applications.
拟议的研究计划的重点是对聚集/蜂群现象的数学模型的理论和数值研究。尽管这种现象出现在各个领域,但我们对聚集模型的应用到人群生物学(细胞的趋化性,动物的趋化性或植入),机器人和意见形成特别感兴趣。文献中存在各种数学模型。基于动力学和连续性(PDE)描述。这些配方中的大多数导致非线性和非局部微分方程,这些方程式在分析和模拟方面具有挑战性。拟议的研究将涉及以前模型的扩展和概括,以及对真正新模型的开发和分析。将特别重点放在解决方案的长时间行为和所得的平衡配置上。重要的聚集模型类别由宏观密度演化的全差分方程描述。该方程表示密度通过具有相互作用电位的卷积给出的速度依赖性的速度场的活动转运。该模型还具有相应的离散/ODE公式。相互作用潜力通常包含短程排斥和远程吸引力,其属性在此类方程的分析和数字中至关重要。除了这种相互作用外,该模型还可能包括外部电位和/或扩散项。离散模型和连续模型都可以作为某些能量功能的梯度流进行配合。因此,变异方法可用于研究其平衡。拟议的研究部分将解决与这一非常通用的模型相关的各个方面,这些模型迄今已被忽略了:i)边界和边界条件的作用,ii)各向异性(例如,一个有限的感知领域)及其效果,iii)多种物种的模型,iv)在表面和歧管上聚集。在应用程序中,所有方面都非常重要,但是到目前为止,文献中很少关注。我们还计划调查聚集模型的几种特定应用(例如意见形成和蛋白质吸附),并开发和研究数学上的新模型,以解决有关学校养鱼的最新实验观察。拟议的项目为学生提供了培训机会,为学生提供了培训机会。从数字和形式方法(渐近学)到严格分析的各种兴趣。此外,这些项目可以容纳各种技能水平,从不经验的大学生到高级博士生和PDF。拟议的计划旨在推进基本的数学研究和应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fetecau, Razvan其他文献

Stationary States and Asymptotic Behavior of Aggregation Models with Nonlinear Local Repulsion

Fetecau, Razvan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fetecau, Razvan', 18)}}的其他基金

Mathematical models for aggregation and self-collective behaviour
聚合和自我集体行为的数学模型
  • 批准号:
    RGPIN-2018-04180
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical models for aggregation and self-collective behaviour
聚合和自我集体行为的数学模型
  • 批准号:
    RGPIN-2018-04180
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical models for aggregation and self-collective behaviour
聚合和自我集体行为的数学模型
  • 批准号:
    RGPIN-2018-04180
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical models for aggregation and self-collective behaviour
聚合和自我集体行为的数学模型
  • 批准号:
    RGPIN-2018-04180
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear PDE models for aggregation phenomena
聚合现象的非线性 PDE 模型
  • 批准号:
    341834-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear PDE models for aggregation phenomena
聚合现象的非线性 PDE 模型
  • 批准号:
    341834-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear PDE models for aggregation phenomena
聚合现象的非线性 PDE 模型
  • 批准号:
    341834-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear PDE models for aggregation phenomena
聚合现象的非线性 PDE 模型
  • 批准号:
    341834-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear PDE models for aggregation phenomena
聚合现象的非线性 PDE 模型
  • 批准号:
    341834-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Compressible euler and kuramoto-sivashinsky-type equations
可压缩欧拉和 kuramoto-sivashinsky 型方程
  • 批准号:
    341834-2007
  • 财政年份:
    2012
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

跨型号电池差异对其外特性的作用机制及普适性建模与健康度评估研究
  • 批准号:
    52307233
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
河北南部地区灰霾的来源和形成机制研究
  • 批准号:
    41105105
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于Petri网和DSM的型号产品协同设计过程和数据世系建模及分析方法研究
  • 批准号:
    61170001
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
保险风险模型、投资组合及相关课题研究
  • 批准号:
    10971157
  • 批准年份:
    2009
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
  • 批准号:
    30830037
  • 批准年份:
    2008
  • 资助金额:
    190.0 万元
  • 项目类别:
    重点项目

相似海外基金

Understanding Rare Genetic Variation and Disease Risk: A Global Neurogenetics Initiative
了解罕见的遗传变异和疾病风险:全球神经遗传学倡议
  • 批准号:
    10660098
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Computational dissection of cellular and network vulnerability in Alzheimer's and related dementias
阿尔茨海默病和相关痴呆症细胞和网络脆弱性的计算剖析
  • 批准号:
    10900995
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Mathematical Models of Tau-PET Measures and Cognitive Decline in Alzheimer’s Disease Across the Lifespan
Tau-PET 测量的数学模型和阿尔茨海默病整个生命周期中的认知衰退
  • 批准号:
    10448899
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
Understanding the dynamic interactions between tau pathology and microgliamediated inflammation in Alzheimer's Disease
了解阿尔茨海默病中 tau 蛋白病理学与小胶质细胞介导的炎症之间的动态相互作用
  • 批准号:
    10622513
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
Understanding the dynamic interactions between tau pathology and microgliamediated inflammation in Alzheimer's Disease
了解阿尔茨海默病中 tau 蛋白病理学与小胶质细胞介导的炎症之间的动态相互作用
  • 批准号:
    10317631
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了