Smart Robotic Surfaces - Multi-scale Actuation of Topographies for Adaptive Adhesion

智能机器人表面 - 地形的多尺度驱动以实现自适应粘附

基本信息

  • 批准号:
    RGPIN-2019-06760
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

When an octopus holds an object, it both grips (macroscopically) by wrapping its whole tentacle, but also locally adheres with sucker rings, before reversing that adhesion for release. Or consider the fly that uses reversible adhesion of its feet to land, hold and then quickly detach from surfaces. A wide range of organisms have mechanisms to reversibly change interfacial strength of adhesion, through dynamic, local structural change (of feet, skin, claws), for climbing, gripping/release, frictional control and locomotion. There are few examples of engineered materials with switchable adhesion. But any technological system using contact adhesion, such as robots, conveyors, gloves and medical devices, could be radically changed by the ability to reversibly change the interfacial adhesion strength (or friction) of their surfaces. Conveyors in manufacturing could better manipulate objects, Velcro could be switched on/off, switchable foot pads could enable climbing robots, a `smart' glove could actively tune its grip, or a new generation of medical devices could attach and release from soft tissue in surgery. This proposal aims to develop materials with switchable control and dynamic optimization of adhesion strength through the actuation (movement and positioning) of micrometer and millimeter scale surface topographies (microposts). We have developed `dynamic micropost arrays' (DMA) to control mechanical adhesion to surfaces, using air pressure (pneumatics) or water pressure (hydraulics). The pressure change can deform the microposts to make them expand out or retract in and grip surfaces as a result. Our approach enables this micropost movement to be controlled digitally, to make them `robotic surfaces', as their movement and properties can be programmed. We also plan to control them through sensory feedback, to `feel' their successful or failed adhesion to a surface. We aim to better understand mechanisms of mechanical adhesion through this local control. Sensing will allow an adhesive DMA layer to optimize its overall adhesion strength, and actively respond to an adhesive failure (slipping). Machine learning algorithms will be tested to respond to pressure sensing information. This approach to dynamic adhesion has not been demonstrated before. Potential applications of this approach could be very significant for technologies in robotics and medicine, and we will explore its application to skin adhesion in particular.
当章鱼抓住一个物体时,它不仅通过包裹整个触手来抓住(宏观上),而且还用吸盘环局部粘附,然后逆转这种粘附以释放。或者考虑一下苍蝇,它利用脚的可逆附着力来着陆、抓住,然后迅速从表面分离。许多生物体都具有通过动态、局部结构变化(脚、皮肤、爪子)可逆地改变界面粘附强度的机制,用于攀爬、抓握/释放、摩擦控制和运动。具有可切换粘附力的工程材料的例子很少。但是任何使用接触粘合的技术系统,例如机器人、传送带、手套和医疗设备,都可以通过可逆地改变其表面的界面粘合强度(或摩擦力)的能力而发生根本性的改变。制造业中的传送带可以更好地操纵物体,尼龙搭扣可以打开/关闭,可切换的脚垫可以使机器人攀爬,“智能”手套可以主动调整其抓地力,或者新一代医疗设备可以在软组织上附着和释放。外科手术。该提案旨在通过微米和毫米级表面形貌(微柱)的驱动(移动和定位)开发具有可切换控制和粘合强度动态优化的材料。我们开发了“动态​​微柱阵列”(DMA),利用气压(气动)或水压(液压)来控制表面的机械粘附力。压力变化会使微柱变形,使其膨胀或缩回,从而夹紧表面。我们的方法使得这种微柱运动能够被数字化控制,使它们成为“机器人表面”,因为它们的运动和属性可以被编程。我们还计划通过感官反馈来控制它们,以“感觉”它们成功或失败地粘附到表面上。我们的目标是通过这种局部控制更好地理解机械粘附机制。传感将使 DMA 粘合层优化其整体粘合强度,并积极响应粘合失效(滑动)。将测试机器学习算法以响应压力传感信息。这种动态粘附方法以前从未被证实过。这种方法的潜在应用对于机器人和医学技术可能非常重要,我们将特别探索其在皮肤粘附方面的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hatton, Benjamin其他文献

Assembly of large-area, highly ordered, crack-free inverse opal films
Shape-programmable fluid bubbles for responsive building skins
  • DOI:
    10.1016/j.jobe.2021.103942
  • 发表时间:
    2022-01-05
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Kay, Raphael;Nitiema, Kevin;Hatton, Benjamin
  • 通讯作者:
    Hatton, Benjamin
Patterning Hierarchy in Direct and Inverse Opal Crystals
  • DOI:
    10.1002/smll.201102691
  • 发表时间:
    2012-06-25
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    Mishchenko, Lidiya;Hatton, Benjamin;Aizenberg, Joanna
  • 通讯作者:
    Aizenberg, Joanna
Low-temperature synthesis of nanoscale silica multilayers - atomic layer deposition in a test tube
  • DOI:
    10.1039/c0jm00696c
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hatton, Benjamin;Kitaev, Vladimir;Aizenberg, Joanna
  • 通讯作者:
    Aizenberg, Joanna
Design of Ice-free Nanostructured Surfaces Based on Repulsion of Impacting Water Droplets
  • DOI:
    10.1021/nn102557p
  • 发表时间:
    2010-12-01
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Mishchenko, Lidiya;Hatton, Benjamin;Aizenberg, Joanna
  • 通讯作者:
    Aizenberg, Joanna

Hatton, Benjamin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hatton, Benjamin', 18)}}的其他基金

Smart Robotic Surfaces - Multi-scale Actuation of Topographies for Adaptive Adhesion
智能机器人表面 - 地形的多尺度驱动以实现自适应粘附
  • 批准号:
    RGPIN-2019-06760
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Smart Robotic Surfaces - Multi-scale Actuation of Topographies for Adaptive Adhesion
智能机器人表面 - 地形的多尺度驱动以实现自适应粘附
  • 批准号:
    RGPIN-2019-06760
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Smart Robotic Surfaces - Multi-scale Actuation of Topographies for Adaptive Adhesion
智能机器人表面 - 地形的多尺度驱动以实现自适应粘附
  • 批准号:
    RGPIN-2019-06760
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Engineering multifunctional hierarchical surface microstructures for bacterial sensing and biofilm prevention
用于细菌传感和生物膜预防的多功能分层表面微结构工程
  • 批准号:
    435940-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Surface treatments for drains to significantly reduce pathogen biofilms in hospitals**
排水管表面处理可显着减少医院的病原体生物膜**
  • 批准号:
    534090-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
Engineering multifunctional hierarchical surface microstructures for bacterial sensing and biofilm prevention
用于细菌传感和生物膜预防的多功能分层表面微结构工程
  • 批准号:
    435940-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Ultralow adhesion silicone coatings to reduce rates of biofilm formation and associated infection
超低附着力有机硅涂层可降低生物膜形成率和相关感染率
  • 批准号:
    513901-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
Surfactant additions to optimize the anti-biofilm activity of chlorinated disinfectants for industrial cleaning
添加表面活性剂以优化工业清洁用氯化消毒剂的抗生物膜活性
  • 批准号:
    498418-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Plus Grants Program
Engineering multifunctional hierarchical surface microstructures for bacterial sensing and biofilm prevention
用于细菌传感和生物膜预防的多功能分层表面微结构工程
  • 批准号:
    435940-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Surface treatments for food processing surfaces to reduce organic residue and microbial accumulation
食品加工表面的表面处理,以减少有机残留和微生物积累
  • 批准号:
    488391-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program

相似国自然基金

基于液晶弹性体的超大共振调谐超表面和超薄翼膜飞行机器人研究
  • 批准号:
    62211530039
  • 批准年份:
    2022
  • 资助金额:
    10 万元
  • 项目类别:
面向高性能表面增强拉曼生物传感的AFM机器人一体化加工方法
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
微生物表面电荷纳米机器人原位调控及实时表征
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
复杂表面接触作业机器人磨削力模型预测控制研究
  • 批准号:
    62073239
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
面向机器人磨抛加工的高铁白车身表面三维形貌并行测量技术研究
  • 批准号:
    52075204
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Wet heat flexible object shaping using a robotic hand that can control the emission of heat, water, and air
使用机械手进行湿热柔性物体成型,可以控制热量、水和空气的排放
  • 批准号:
    21K19790
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Smart Robotic Surfaces - Multi-scale Actuation of Topographies for Adaptive Adhesion
智能机器人表面 - 地形的多尺度驱动以实现自适应粘附
  • 批准号:
    RGPIN-2019-06760
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Multimode Frictional Anisotropic Skin for Supporting Locomotion of A Snake-like Soft-bodied Robot on Various Frictional Ground Surfaces
支持蛇形软体机器人在各种摩擦地面上运动的多模式摩擦各向异性蒙皮
  • 批准号:
    20K14690
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Smart Robotic Surfaces - Multi-scale Actuation of Topographies for Adaptive Adhesion
智能机器人表面 - 地形的多尺度驱动以实现自适应粘附
  • 批准号:
    RGPIN-2019-06760
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Smart Robotic Surfaces - Multi-scale Actuation of Topographies for Adaptive Adhesion
智能机器人表面 - 地形的多尺度驱动以实现自适应粘附
  • 批准号:
    RGPIN-2019-06760
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了