Physical, Mathematical, and Machine Learning Modeling of Iron and Steel Processes
钢铁工艺的物理、数学和机器学习建模
基本信息
- 批准号:RGPIN-2021-02615
- 负责人:
- 金额:$ 3.35万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The mining and metals industry is facing major challenges and the iron and steel industry is no exception. All iron and steel makers are aiming for energy efficient and environmentally friendly operations and at the same time improving and optimizing the associated metallurgical processes to meet the stringent product quality demands at reduced cost. Having all these constraints in mind, iron and steel companies have heavily invested in research and development and one of the major areas has been physical and mathematical modeling of steelmaking and casting processes. However, the iron and steel makers have access to huge amount of process data which have been stored for a long time, and now it is essential to include data driven modeling and machine learning in solving process related problems. Today, the rapid development of modern industry and industry 4.0 is accelerating the discovery of next-generation hybrid models which combine both fundamental and data driven concepts, and the building of digital twins of each unit operation. Hence, developing digital twins for iron and steelmaking processes is critical to strengthening Canada's competitive position in today's metals industry. Having expertise in process metallurgy, physical and mathematical modeling, and machine learning, the applicant's group at the University of Toronto aims to use quantitative experimental techniques in physical models and generate controlled process data to develop preliminary digital twins of iron and steel processes, and integrate them with industrial data to develop real digital twins of unit operations. With this long-term vision, physical and digital twins for basic oxygen furnaces (BOF), Continuous Caster (CC), Ladle Metallurgy (LMF), and a Water Atomizer (WA) for the production of metal powders, will be developed. Researchers in our group will extensively use physical and mathematical modeling to understand the complicated underlying physics behind each process, and also generate controlled experimental data. Researchers will also use machine learning based predictions of different outputs for the above mentioned processes. Some of the key questions to be answered are: (i) Where does fundamental physical and mathematical models fail to make accurate predictions? (ii) Are the data driven predictions interpretable? (iii) Are digital twins reliable? (iv) Can we develop hybrid techniques using the power of both fundamental models based on metallurgical principles and data driven models? The short term benefits will be in-depth knowledge of the underlying physics of various unit operations and the applicability of machine learning techniques for process optimization. The long-term benefits will be the development of digital twins and hybrid models which can serve as real time optimization tools and benefit the iron and steel industry immensely. Finally, all the knowledge and discovery can be cross pollinated to other mining and metals sectors in Canada.
采矿和地铁面临着重大的挑战,铁和钢也不例外。是对钢材和铸造过程的数学建模,访问大量的过程数据,蜂蜜存储了很长时间,对于数据数据数据和机器学习解决过程,这是现代行业和现代行业的快速发展,至关重要的。工业4.0正在加快结合基本和数据驱动概念的下一代Hybid模型,并建立每个单元操作的数字双胞胎。 。在我们小组的研究人员中开发了工业研究人员的研究人员,以这种长期视力开发出真正的双胞胎操作。将广泛使用物理和数学建模来理解每个过程的复杂基础,还可以预测上述过程的不同输出。摩尔的准确预测(ii)是可以解释数据的吗?机器学习过程优化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chattopadhyay, Kinnor其他文献
Physical and Mathematical Modelling of Inert Gas Shrouding in a Tundish
- DOI:
10.2355/isijinternational.51.573 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:1.8
- 作者:
Chattopadhyay, Kinnor;Isac, Mihaiela;Guthrie, Roderick I. L. - 通讯作者:
Guthrie, Roderick I. L.
Multiple-metal-doped Fe3O4@Fe2O3 nanoparticles with enhanced photocatalytic performance for methyl orange degradation under UV/solar light irradiation
多种金属掺杂的 Fe3O4@Fe2O3 纳米颗粒在紫外/太阳光照射下具有增强的光催化降解甲基橙性能
- DOI:
10.1016/j.ceramint.2020.04.234 - 发表时间:
2020-08-01 - 期刊:
- 影响因子:5.2
- 作者:
Li, Nan;He, Yun-long;Chattopadhyay, Kinnor - 通讯作者:
Chattopadhyay, Kinnor
Modeling of Liquid Steel/Slag/Argon Gas Multiphase Flow During Tundish Open Eye Formation in a Two-Strand Tundish
- DOI:
10.1007/s11663-018-1177-z - 发表时间:
2018-04-01 - 期刊:
- 影响因子:3
- 作者:
Chatterjee, Saikat;Li, Donghui;Chattopadhyay, Kinnor - 通讯作者:
Chattopadhyay, Kinnor
Bubble Characterization in a Continuous Casting Mold: Comparison and Identification of Image Processing Techniques
- DOI:
10.1007/s11663-022-02541-2 - 发表时间:
2022-05-23 - 期刊:
- 影响因子:3
- 作者:
Srivastava, Amiy;Asgarian, Ali;Chattopadhyay, Kinnor - 通讯作者:
Chattopadhyay, Kinnor
Solar grade silicon production: A review of kinetic, thermodynamic and fluid dynamics based continuum scale modeling
- DOI:
10.1016/j.rser.2017.05.019 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:15.9
- 作者:
Yadav, Shwetank;Chattopadhyay, Kinnor;Singh, Chandra Veer - 通讯作者:
Singh, Chandra Veer
Chattopadhyay, Kinnor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chattopadhyay, Kinnor', 18)}}的其他基金
Innovative Low Melting Liquid Metal Model for Optimizing Argon Injection Practices during Steelmaking and Continuous Casting for Productivity and Quality Improvements
创新的低熔点液态金属模型,用于优化炼钢和连铸过程中的吹氩实践,以提高生产率和质量
- 批准号:
522412-2017 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Collaborative Research and Development Grants
Development of a bench-scale liquid metal wiping pilot system for understanding and optimizing the jet wiping process during hot dip galvanizing
开发小型液态金属擦拭试点系统,用于了解和优化热浸镀锌过程中的喷射擦拭过程
- 批准号:
565310-2021 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Alliance Grants
Continuous Caster Mould Digital Twin Development for Fluid Flow Control and Sliver Defect Minimization
用于流体流动控制和条子缺陷最小化的连铸机模具数字孪生开发
- 批准号:
560338-2020 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Alliance Grants
Physical, Mathematical, and Machine Learning Modeling of Iron and Steel Processes
钢铁工艺的物理、数学和机器学习建模
- 批准号:
RGPIN-2021-02615 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Fluid flow modeling of a curved continuous slab casting mold
弯曲板坯连铸结晶器的流体流动建模
- 批准号:
530892-2018 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Collaborative Research and Development Grants
Continuous Caster Mould Digital Twin Development for Fluid Flow Control and Sliver Defect Minimization
用于流体流动控制和条子缺陷最小化的连铸机模具数字孪生开发
- 批准号:
560338-2020 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Alliance Grants
Enhancing liquid metal quality and productivity in a slab caster through physical and mathematical modelling
通过物理和数学建模提高板坯连铸机的液态金属质量和生产率
- 批准号:
488536-2015 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Collaborative Research and Development Grants
Fluid flow modeling of a curved continuous slab casting mold
弯曲板坯连铸结晶器的流体流动建模
- 批准号:
530892-2018 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Collaborative Research and Development Grants
Innovative Low Melting Liquid Metal Model for Optimizing Argon Injection Practices during Steelmaking and Continuous Casting for Productivity and Quality Improvements
创新的低熔点液态金属模型,用于优化炼钢和连铸过程中的吹氩实践,以提高生产率和质量
- 批准号:
522412-2017 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Collaborative Research and Development Grants
Fluid flow modeling of a curved continuous slab casting mold
弯曲板坯连铸结晶器的流体流动建模
- 批准号:
530892-2018 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
平方输入下欠驱动介电弹性体软体机器人数学建模与自传感运动控制
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
平方输入下欠驱动介电弹性体软体机器人数学建模与自传感运动控制
- 批准号:62273316
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
面向机器理解数学应用题的命题抽取方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
统计优化与学习天元数学交流项目
- 批准号:12126201
- 批准年份:2021
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
基于关系推理的初等数学机器解答研究
- 批准号:62177025
- 批准年份:2021
- 资助金额:47 万元
- 项目类别:面上项目
相似海外基金
Radiation Oncology at the Interface of Pediatric Cancer Biology and Data Science
儿科癌症生物学和数据科学交叉领域的放射肿瘤学
- 批准号:
10712290 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Physical Biology and Deep Learning for Antibiotic Resistance and Discovery
抗生素耐药性和发现的物理生物学和深度学习
- 批准号:
10773228 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Classification of Ankle Osteoarthritis Severity from Weightbearing Computed Tomography Using Statistical Shape Modeling and Machine Learning
使用统计形状建模和机器学习根据负重计算机断层扫描对踝骨关节炎严重程度进行分类
- 批准号:
10525301 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Classification of Ankle Osteoarthritis Severity from Weightbearing Computed Tomography Using Statistical Shape Modeling and Machine Learning
使用统计形状建模和机器学习根据负重计算机断层扫描对踝骨关节炎严重程度进行分类
- 批准号:
10669281 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别: