Synergies between numerical modelling and machine learning in geotechnical engineering

岩土工程中数值建模和机器学习之间的协同作用

基本信息

  • 批准号:
    RGPIN-2022-04747
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The training of deep neural networks requires large datasets with thousands of time series or images. Each dataset entry must be labelled. For example, to estimate the size of soil particles from photographs with a convolutional neural network, the dataset must include thousands of images with corresponding particle sizes. The costs associated with the generation of these large datasets are often prohibitive, especially in specialized fields such as geotechnical engineering. Our recent work on the numerical modelling of erosion in granular materials and the determination of particle size distributions (PSD) from photographs has highlighted the potential of using finite-element or discrete-element models for the creation of large synthetic datasets for machine learning. The long-term objective of our research program is to create new workflows that combine numerical modelling and deep learning for the development of intelligent testing and sensing methods in geotechnical engineering. Our first short-term objective is to improve domain transfer through more realistic data and randomization. Domain transfer issues, the main barriers preventing network training based on synthetic data, are caused by the idealized nature of synthetic data. The second objective of the research program is to use numerical methods to generate secondary neural network inputs with physical meaning. Three practical problems will be used to apply our methods. The first problem is the determination of the PSD of granular materials from photographs. Synthetic images with different levels of realism will be prepared to predict the PSD with convolutional neural networks. The second problem concerns the analysis of instrumentation data. Synthetic pore pressure time series corresponding to realistic failure mechanisms will be created with the finite element method for dams and tunnels. The last example concerns the prediction of settlements for Champlain clays. Settlements maps will be prepared using remote sensing. Different layers of information (land use, surface geology, water table depth) will be combined with the output of a series of simple finite element models to predict settlements. Domain transfer problems are important for all applications involving synthetic data. The three problems that were chosen are important geotechnical applications that would benefit from machine learning solutions. PSD determinations are common in many fields of engineering (e.g. powder technology) and still often conducted with sieves. It is now relatively easy to generate and to store large amount of instrumentation data. These data are seldom used to their full potential because of a lack of analysis tools. Finally, in the context of climate changes, settlements in sensitive clays are a significant problem that is already attracting media attention in Eastern Canada. This research program will also provide an opportunity for the training of highly qualified geotechnical engineers.
深度神经网络的训练需要包含数千个时间序列或图像的大型数据集。每个数据集条目必须被标记。例如,要使用卷积神经网络根据照片估计土壤颗粒的大小,数据集必须包含数千张具有相应颗粒大小的图像。生成这些大型数据集的相关成本往往令人望而却步,尤其是在岩土工程等专业领域。我们最近对颗粒材料侵蚀的数值模拟以及通过照片确定颗粒尺寸分布 (PSD) 的工作凸显了使用有限元或离散元模型为机器学习创建大型合成数据集的潜力。 我们研究计划的长期目标是创建新的工作流程,将数值建模和深度学习相结合,以开发岩土工程中的智能测试和传感方法。我们的第一个短期目标是通过更真实的数据和随机化来改进域名转移。域转移问题是阻碍基于合成数据的网络训练的主要障碍,是由合成数据的理想化性质引起的。该研究计划的第二个目标是使用数值方法生成具有物理意义的二次神经网络输入。 将通过三个实际问题来应用我们的方法。第一个问题是根据照片确定颗粒材料的 PSD。将准备具有不同真实度级别的合成图像,以使用卷积神经网络预测 PSD。第二个问题涉及仪器数据的分析。将使用大坝和隧道的有限元方法创建与实际破坏机制相对应的合成孔隙压力时间序列。最后一个例子涉及尚普兰粘土沉降的预测。将利用遥感技术绘制定居点地图。不同层次的信息(土地利用、地表地质、地下水位深度)将与一系列简单有限元模型的输出相结合来预测沉降。域转移问题对于涉及合成数据的所有应用程序都很重要。选择的三个问题都是重要的岩土工程应用,将受益于机器学习解决方案。 PSD 测定在许多工程领域(例如粉末技术)中很常见,并且仍然经常使用筛子进行。现在生成和存储大量仪器数据相对容易。由于缺乏分析工具,这些数据很少得到充分利用。最后,在气候变化的背景下,敏感粘土中的定居点是一个重大问题,已经引起了加拿大东部媒体的关注。该研究计划还将为培训高素质岩土工程师提供机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Duhaime, François其他文献

Duhaime, François的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Duhaime, François', 18)}}的其他基金

Multiphysics modelling and photogrammetry applied to the study of Champlain clays and their geotechnical properties
多物理场建模和摄影测量应用于尚普兰粘土及其岩土特性的研究
  • 批准号:
    RGPIN-2015-06728
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Multiphysics modelling and photogrammetry applied to the study of Champlain clays and their geotechnical properties
多物理场建模和摄影测量应用于尚普兰粘土及其岩土特性的研究
  • 批准号:
    RGPIN-2015-06728
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Multiphysics modelling and photogrammetry applied to the study of Champlain clays and their geotechnical properties
多物理场建模和摄影测量应用于尚普兰粘土及其岩土特性的研究
  • 批准号:
    RGPIN-2015-06728
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Multiphysics modelling and photogrammetry applied to the study of Champlain clays and their geotechnical properties
多物理场建模和摄影测量应用于尚普兰粘土及其岩土特性的研究
  • 批准号:
    RGPIN-2015-06728
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Multiphysics modelling and photogrammetry applied to the study of Champlain clays and their geotechnical properties
多物理场建模和摄影测量应用于尚普兰粘土及其岩土特性的研究
  • 批准号:
    RGPIN-2015-06728
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Multiphysics modelling and photogrammetry applied to the study of Champlain clays and their geotechnical properties
多物理场建模和摄影测量应用于尚普兰粘土及其岩土特性的研究
  • 批准号:
    RGPIN-2015-06728
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Multiphysics modelling and photogrammetry applied to the study of Champlain clays and their geotechnical properties
多物理场建模和摄影测量应用于尚普兰粘土及其岩土特性的研究
  • 批准号:
    RGPIN-2015-06728
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Multiphysics modelling and photogrammetry applied to the study of Champlain clays and their geotechnical properties
多物理场建模和摄影测量应用于尚普兰粘土及其岩土特性的研究
  • 批准号:
    RGPIN-2015-06728
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Development and experimental validation of a multiscale DEM-FEM model for core overtopping in embankment dams
堤坝核心漫溢多尺度 DEM-FEM 模型的开发和实验验证
  • 批准号:
    486427-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Collaborative Research and Development Grants
Development and experimental validation of a multiscale DEM-FEM model for core overtopping in embankment dams
堤坝核心漫溢多尺度 DEM-FEM 模型的开发和实验验证
  • 批准号:
    486427-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

热带海洋和南极气候变率之间遥相关过程的统计分析和数值模拟研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
磁约束等离子体中磁岛与离子尺度电磁湍流之间的非线性相互作用的数值模拟研究
  • 批准号:
    11805135
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
热带季节内振荡与南亚高压季节内振荡之间相互作用
  • 批准号:
    41575043
  • 批准年份:
    2015
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
北极海冰消融与欧亚大陆中、高纬度地区盛行天气型以及极端天气之间的联系
  • 批准号:
    41475080
  • 批准年份:
    2014
  • 资助金额:
    88.0 万元
  • 项目类别:
    面上项目
砂土中静压群桩压入和加载过程中桩与桩之间相互作用机理研究
  • 批准号:
    51178165
  • 批准年份:
    2011
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Numerical Analysis of Noise Reduction of Supersonic Jet by Micro Disturbance Using Beat Phenomena between Unstable Waves
利用不稳定波间拍频现象微扰动降低超音速射流噪声的数值分析
  • 批准号:
    22K03902
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical experiments of mantle convection of massive terrestrial planets: roles of interactions between adiabatic compression and changes in physical properties
大质量类地行星地幔对流的数值实验:绝热压缩与物理性质变化之间相互作用的作用
  • 批准号:
    22K03702
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Toward understanding progenitors and explosion physics of core-collapse supernovae by mutual studies between observations and numerical simulations
通过观测和数值模拟之间的相互研究来了解核心塌陷超新星的前身和爆炸物理
  • 批准号:
    21H01121
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
EAR-PF: Closing the gap between analogue studies and numerical lava flow models using insights from the 2018 Kilauea eruption
EAR-PF:利用 2018 年基拉韦厄火山喷发的见解缩小模拟研究和数值熔岩流模型之间的差距
  • 批准号:
    1952646
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Fellowship Award
Identifying Relationships between Late Premature Birth, Parental Factors, and Early Numerical and Spatial Development
确定晚期早产、父母因素与早期数字和空间发育之间的关系
  • 批准号:
    10260415
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了