Machine-Learning-Driven Synthesis Methodologies for Analog and RF Integrated Circuits in Advanced Nanometer Technologies

先进纳米技术中模拟和射频集成电路的机器学习驱动合成方法

基本信息

  • 批准号:
    RGPIN-2019-04130
  • 负责人:
  • 金额:
    $ 2.84万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

As the conventional planar CMOS technology scales down to 22nm and below, maintaining ideal transistor characteristics becomes increasingly challenging. For this reason, nonplanar field-effect transistors (FETs) have been regarded as effective substitutes for ultimate scaling. Due to physical complexity of the nonplanar FET structure in advanced nanometer technologies, transistor performance is strongly affected by associated parasitics, layout dependent effects (LDEs), and lithographic imperfection. To maintain signal integrity, these issues have to be seriously considered in the synthesis of analog/RF integrated circuits (ICs). In this research program, the fascinating advancement of artificial intelligence will be leveraged to promote electronic design automation (EDA) of analog/RF ICs. A complete set of synthesis methodologies and computer-aided design tools will be studied to strengthen the link between performance optimization and physical effects. An innovative machine-learning-driven circuit topology synthesis methodology will be developed. It can emulate expert human designers to apply the knowledge extracted from the given training data to effectively generate proper circuit topologies through inference. Moreover, a novel parasitic/LDE/lithography-aware circuit-sizing methodology will be studied; this methodology would consist of a quick approximate optimization stage followed by a simulation-based refined sizing process. Parasitics, LDEs, and lithographic effects in the advanced nonplanar nanometer technologies will be integrated into MOSFET modeling, which can be included into the topology synthesis and circuit sizing for proactive consideration of layout impact. Furthermore, to fill the vacuum of similar commercial tools in the EDA market, we will continue to explore automated analog/RF layout migration strategies to address parasitics, LDEs, and lithography-related constraints in the nonplanar nanometer technologies. Due to their high sensitivity to complicated analog effects, analog/RF ICs have been recognized as the design bottleneck for promptly pushing mixed-signal system-on-chip products to market. Systematic countermeasures in the layout-aware comprehensive synthesis of analog/RF ICs have not yet been addressed worldwide. With enormous potential for commercialization, this proposed research program addresses the increasingly challenging parasitics, LDEs, and lithographic issues in the nonplanar nanometer technologies; these issues cannot be ignored for analog/RF IC synthesis especially under the shrinking design window and pressing process variation. This program will train over half a dozen next-generation highly qualified personnel (HQP) on advanced EDA in upgraded nanometer technologies. It will benefit the analog/RF design community through significant improvements in design productivity and reliability, which can enhance Canada's competitive advantage in this field.
随着常规平面CMOS技术的扩展到22nm及以下,保持理想的晶体管特征变得越来越具有挑战性。因此,非平面场效应晶体管(FET)被认为是最终缩放的有效替代品。由于高级纳米技术中非平面FET结构的身体复杂性,晶体管性能受到相关的寄生虫,布局依赖效应(LDES)和光刻缺陷的强烈影响。为了维持信号完整性,必须在合成模拟/RF综合电路(ICS)中认真考虑这些问题。在该研究计划中,将利用人工智能的引人入胜的进步来促进模拟/RF IC的电子设计自动化(EDA)。将研究一组完整的合成方法和计算机辅助设计工具,以加强性能优化和物理效果之间的联系。将开发一种创新的机器学习驱动电路拓扑合成方法。它可以模仿专家设计师,以应用从给定的培训数据中提取的知识,以通过推理有效地产生适当的电路拓扑。此外,将研究一种新型的寄生/LDE/光刻 - 感知电路大小的方法。该方法将包括一个快速近似优化阶段,然后是基于仿真的精制尺寸过程。高级非平面纳米技术中的寄生虫,LDE和光刻效应将集成到MOSFET建模中,可以将其包括在拓扑合成和电路尺寸中,以主动考虑布局影响。此外,为了填补EDA市场中类似商业工具的真空,我们将继续探索自动化的模拟/RF布局迁移策略,以解决非平面纳米技术中的寄生虫,LDE和与光刻相关的约束。 由于它们对复杂的模拟效果的敏感性很高,因此,模拟/RF IC被认为是将混合信号的芯片上片上的混合信号推向市场的设计瓶颈。尚未在全球范围内解决模拟/RF IC的综合综合合成中的系统对策。该建议的研究计划具有巨大的商业化潜力,可以解决非平面纳米技术中日益具有挑战性的寄生虫,LDE和光刻问题。对于模拟/RF IC综合,尤其是在缩小的设计窗口和紧迫过程变化下,这些问题不能忽略。该计划将在升级纳米技术中的高级EDA上培训超过六个高素质高素质的人员(HQP)。它将通过显着提高设计生产率和可靠性来使模拟/RF设计社区受益,这可以提高加拿大在这一领域的竞争优势。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhang, Lihong其他文献

OPTIMAL CONSUMPTION AND INVESTMENT UNDER IRRATIONAL BELIEFS
非理性信念下的最优消费和投资
Angiotensin-(1-7) attenuates damage to podocytes induced by preeclamptic serum through MAPK pathways
Virus-like particle vaccines with epitopes from porcine epidemic virus and transmissible gastroenteritis virus incorporated into self-assembling ADDomer platform provide clinical immune responses in piglets.
  • DOI:
    10.3389/fimmu.2023.1251001
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Du, Pengfei;Yan, Quanhui;Zhang, Xiao-Ai;Zeng, Weijun;Xie, Kaiyuan;Yuan, Zhongmao;Liu, Xiaodi;Liu, Xueyi;Zhang, Lihong;Wu, Keke;Li, Xiaowen;Fan, Shuangqi;Zhao, Mingqiu;Chen, Jinding
  • 通讯作者:
    Chen, Jinding
[Explanation of the experts consensus on diagnosis and treatment of laryngopharyngeal reflux disease (2015)].
Coexisting renal artery stenosis and metabolic syndrome magnifies mitochondrial damage, aggravating poststenotic kidney injury in pigs
  • DOI:
    10.1097/hjh.0000000000002129
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Nargesi, Arash Aghajani;Zhang, Lihong;Eirin, Alfonso
  • 通讯作者:
    Eirin, Alfonso

Zhang, Lihong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhang, Lihong', 18)}}的其他基金

Ultra-Low Power SAR ADC for Low-Activity Signals (I2I-Lab2Market - Market Assessment)
适用于低活动信号的超低功耗 SAR ADC(I2I-Lab2Market - 市场评估)
  • 批准号:
    571223-2022
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Idea to Innovation
Machine-Learning-Driven Synthesis Methodologies for Analog and RF Integrated Circuits in Advanced Nanometer Technologies
先进纳米技术中模拟和射频集成电路的机器学习驱动合成方法
  • 批准号:
    RGPIN-2019-04130
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Piezoelectric MEMS Vibration Energy Harvesters: Renewable Energy Source in the Portable Era (I2I Phase - Market Assessment)
压电 MEMS 振动能量采集器:便携式时代的可再生能源(I2I 阶段 - 市场评估)
  • 批准号:
    570988-2022
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Idea to Innovation
Machine-Learning-Driven Synthesis Methodologies for Analog and RF Integrated Circuits in Advanced Nanometer Technologies
先进纳米技术中模拟和射频集成电路的机器学习驱动合成方法
  • 批准号:
    RGPIN-2019-04130
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Machine-Learning-Driven Synthesis Methodologies for Analog and RF Integrated Circuits in Advanced Nanometer Technologies
先进纳米技术中模拟和射频集成电路的机器学习驱动合成方法
  • 批准号:
    RGPIN-2019-04130
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Synergistic Synthesis Methodologies and Computer-Aided Design Tools for Analog and RF Integrated Circuits in Advanced Technologies
先进技术中模拟和射频集成电路的协同综合方法和计算机辅助设计工具
  • 批准号:
    342185-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Synergistic Synthesis Methodologies and Computer-Aided Design Tools for Analog and RF Integrated Circuits in Advanced Technologies
先进技术中模拟和射频集成电路的协同综合方法和计算机辅助设计工具
  • 批准号:
    342185-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Synergistic Synthesis Methodologies and Computer-Aided Design Tools for Analog and RF Integrated Circuits in Advanced Technologies
先进技术中模拟和射频集成电路的协同综合方法和计算机辅助设计工具
  • 批准号:
    342185-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Synergistic Synthesis Methodologies and Computer-Aided Design Tools for Analog and RF Integrated Circuits in Advanced Technologies
先进技术中模拟和射频集成电路的协同综合方法和计算机辅助设计工具
  • 批准号:
    342185-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Manufacturability-aware performance-driven layout-centric design automation of analog and RF integrated circuits
模拟和射频集成电路的可制造性感知、性能驱动、以布局为中心的设计自动化
  • 批准号:
    342185-2007
  • 财政年份:
    2012
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

物理-机器学习混合驱动的锂离子电池老化分层动态建模方法研究
  • 批准号:
    52307234
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
机器学习驱动的复杂量子系统鲁棒最优控制
  • 批准号:
    62373342
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
同步辐射衍射知识驱动的机器学习在线解析方法研究与部署
  • 批准号:
    12375326
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
数据驱动的冗余机器人模型学习与规划策略研究
  • 批准号:
    62306130
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
时空大数据驱动的可解释交通感知、预测和调控模型关键技术研究
  • 批准号:
    62306258
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Revolutionizing Seamless Precipitation Forecast: Machine Learning-Driven Assimilation of Satellite Precipitation Observations in NICAM-LETKF for Powering Global Diurnal and Heavy Rainfall Predictions
彻底改变无缝降水预报:NICAM-LETKF 中机器学习驱动的卫星降水观测同化,为全球昼夜和强降雨预测提供支持
  • 批准号:
    24K17129
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
  • 批准号:
    10823917
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
  • 批准号:
    23K24856
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
  • 批准号:
    2236947
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
  • 批准号:
    2301173
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了