Differentiable Programming for Computer Vision and Medical Image Analysis

计算机视觉和医学图像分析的可微分编程

基本信息

  • 批准号:
    RGPIN-2020-04139
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Deep learning has emerged as a strong method with empirical evidence to deliver accurate learning models for various computer vision applications. The success behind deep learning seems to be supervised learning that requires lots and lots of tagged image and video data. The requirement to have lots of training data with expert-created labels or tags pose a particularly challenging situation for medical image analysis applications, where scarcity of training data is common. Over the years, some methods, such as transfer learning have emerged to mitigate this issue. However, none of these techniques can adequately address lack of training data. The proposed research program will explore an alternative to the exiting techniques and will make use of prior and domain knowledge along with the power of deep learning to address the scarcity of labeled training data. As a technical solution, the program will rely on differentiable programming to mix traditional computer vision algorithms with deep learning methods, where the prior knowledge can be included in the traditional methods. Differentiable programming refers to gradient descent based optimization that relies on the differentiability of all the functions used in a data processing pipeline. However, most traditional computer vision methods include functions or processes that are not differentiable. Thus, the research further proposes to overcome this difficulty by using bypass neural networks to approximate non-differentiable functional modules. Using several use cases, the proposed research also demonstrates that the scope extends further beyond the lack of training data. For example, an end-to-end detection-tracking system for multi-object tracking can be cast into the proposed optimization framework. The research program will have ample opportunity to provide broad training to students in computer vision, medical image analysis, theoretical and statistical analysis of learning algorithms that fit well into Canada's commitment to artificial intelligence research. The proposed research can create a new and significant family of learning algorithms in computer vision and image analysis research.
深度学习已成为一种具有经验证据的强大方法,可为各种计算机视觉应用提供准确的学习模型。深度学习背后的成功似乎是监督学习,它需要大量的标记图像和视频数据。拥有大量带有专家创建的标签或标签的训练数据的要求对于医学图像分析应用来说是一个特别具有挑战性的情况,在这些应用中训练数据稀缺是很常见的。多年来,出现了一些方法(例如迁移学习)来缓解这个问题。然而,这些技术都无法充分解决训练数据缺乏的问题。拟议的研究计划将探索现有技术的替代方案,并将利用先验知识和领域知识以及深度学习的力量来解决标记训练数据的稀缺问题。作为一种技术解决方案,该程序将依靠可微分编程将传统计算机视觉算法与深度学习方法相结合,其中先验知识可以包含在传统方法中。可微编程是指基于梯度下降的优化,它依赖于数据处理管道中使用的所有函数的可微性。然而,大多数传统的计算机视觉方法都包含不可微分的函数或过程。因此,研究进一步提出通过使用旁路神经网络来逼近不可微的功能模块来克服这一困难。通过使用几个用例,拟议的研究还表明,范围进一步超出了缺乏训练数据的范围。例如,用于多目标跟踪的端到端检测跟踪系统可以被纳入所提出的优化框架中。该研究项目将有充足的机会为学生提供计算机视觉、医学图像分析、学习算法的理论和统计分析方面的广泛培训,这些培训非常适合加拿大对人工智能研究的承诺。所提出的研究可以在计算机视觉和图像分析研究中创建一个新的、重要的学习算法系列。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ray, Nilanjan其他文献

Intravital leukocyte detection using the gradient inverse coefficient of variation.
使用梯度逆变异系数进行活体白细胞检测。
  • DOI:
  • 发表时间:
    2005-07
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Dong, Gang;Ray, Nilanjan;Acton, Scott T
  • 通讯作者:
    Acton, Scott T
Automatic segmentation of spinal cord MRI using symmetric boundary tracing.
使用对称边界追踪自动分割脊髓 MRI。
  • DOI:
  • 发表时间:
    2010-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mukherjee, Dipti Prasad;Cheng, Irene;Ray, Nilanjan;Mushahwar, Vivian;Lebel, Marc;Basu, Anup
  • 通讯作者:
    Basu, Anup
Motion gradient vector flow: an external force for tracking rolling leukocytes with shape and size constrained active contours.
运动梯度矢量流:用于跟踪形状和大小受限的活动轮廓的滚动白细胞的外力。
  • DOI:
  • 发表时间:
    2004-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ray, Nilanjan;Acton, Scott T
  • 通讯作者:
    Acton, Scott T
MISTICA: Minimum Spanning Tree-Based Coarse Image Alignment for Microscopy Image Sequences.
MISTICA:用于显微图像序列的基于最小生成树的粗图像对齐。
  • DOI:
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ray, Nilanjan;McArdle, Sara;Ley, Klaus;Acton, Scott T
  • 通讯作者:
    Acton, Scott T
Intravital live cell triggered imaging system reveals monocyte patrolling and macrophage migration in atherosclerotic arteries.
活体活细胞触发成像系统揭示了动脉粥样硬化动脉中的单核细胞巡逻和巨噬细胞迁移。
  • DOI:
  • 发表时间:
    2015-02
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    McArdle, Sara;Chodaczek, Grzegorz;Ray, Nilanjan;Ley, Klaus
  • 通讯作者:
    Ley, Klaus

Ray, Nilanjan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ray, Nilanjan', 18)}}的其他基金

Differentiable Programming for Computer Vision and Medical Image Analysis
计算机视觉和医学图像分析的可微分编程
  • 批准号:
    RGPIN-2020-04139
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Differentiable Programming for Computer Vision and Medical Image Analysis
计算机视觉和医学图像分析的可微分编程
  • 批准号:
    RGPIN-2020-04139
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
AI-based document preprocessing for optical character recognition
基于人工智能的光学字符识别文档预处理
  • 批准号:
    567474-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alliance Grants
AI-based document preprocessing for optical character recognition
基于人工智能的光学字符识别文档预处理
  • 批准号:
    567474-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alliance Grants
Differentiable Programming for Computer Vision and Medical Image Analysis
计算机视觉和医学图像分析的可微分编程
  • 批准号:
    RGPIN-2020-04139
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Differentiable Programming for Computer Vision and Medical Image Analysis
计算机视觉和医学图像分析的可微分编程
  • 批准号:
    RGPIN-2020-04139
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
AI-based Screening for Breast Cancer Treatment
基于人工智能的乳腺癌治疗筛查
  • 批准号:
    558274-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alliance Grants
AI-based Screening for Breast Cancer Treatment
基于人工智能的乳腺癌治疗筛查
  • 批准号:
    558274-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alliance Grants
Compressed Sensing for Computer Vision
计算机视觉的压缩感知
  • 批准号:
    RGPIN-2015-03796
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Compressed Sensing for Computer Vision
计算机视觉的压缩感知
  • 批准号:
    RGPIN-2015-03796
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

凋亡小体通过ACKR3介导巨噬细胞重编程对狼疮的疗效及机制研究
  • 批准号:
    82302053
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
星形胶质细胞糖代谢重编程介导Lactoferrin基因缺失引发的早期生长迟缓和认知障碍
  • 批准号:
    32371037
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
靶向半胱氨酸代谢重编程诱导嫌色细胞肾癌铁死亡的分子机制研究
  • 批准号:
    82372853
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
猪卵母细胞脂源性代谢物Acetyl-CoA和α-KG调控体细胞核移植表观遗传重编程机制研究
  • 批准号:
    32372884
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Engaging Blind and Visually Impaired Youth in Computer Science through Music Programming
合作研究:通过音乐编程让盲人和视障青少年参与计算机科学
  • 批准号:
    2300633
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Dissemination of the Human Neocortical Neurosolver (HNN) software for circuit level interpretation of human MEG/EEG
传播用于人类 MEG/EEG 电路级解释的人类新皮质神经解算器 (HNN) 软件
  • 批准号:
    10726032
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Therapeutic Monitoring System (TMS)
治疗监测系统(TMS)
  • 批准号:
    10786206
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Collaborative Research: Using Flow-Based Music Programming to Engage Children in Computer Science
协作研究:使用基于流程的音乐编程让孩子们参与计算机科学
  • 批准号:
    2241714
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Improving Cochlear Implant Outcomes Through Modeling and Programming Strategies Based on Human Inner Ear Pathology
通过基于人类内耳病理学的建模和编程策略改善人工耳蜗的效果
  • 批准号:
    10825043
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了