Novel data analytics tools combined with high-resolution cervical auscultation are needed to instrumentally screen for dysphagia
需要新颖的数据分析工具与高分辨率颈部听诊相结合来仪器筛查吞咽困难
基本信息
- 批准号:RGPIN-2021-02724
- 负责人:
- 金额:$ 3.35万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dysphagia (swallowing disorders), the most common issue associated with aging and neurological disorders, affects the daily lives of millions of Canadians. Dysphagia risk is currently assessed via screening, before the diagnostic gold-standard videofluoroscopic test, but many patients who silently aspirate pass initial screens. The PI's long-term research goal is to utilize computational approaches and instrumentation and translate innovative engineering research to clinical solutions for dysphagia. Therefore, the short-term research goal of this proposal is to combine the advances in fundamentally new data analytics tools with high-resolution cervical auscultation (HRCA - accelerometer and microphone recordings from the neck) to instrumentally screen for dysphagia. The educational objective is to create interdisciplinary training opportunities for highly qualified personnel (HQP) by combining signal processing, machine learning, and instrumentation. HQP will also acquire extensive knowledge of major health issues associated with aging and neurological disorders, which are the major contributors to healthcare expenditures in Canada. The proposed program is a major departure from the current signal processing efforts by focusing on the innovation of signal processing and machine learning approaches for dysphagia. Our transformative approach addresses current signal processing obstacles: First, classical approaches cannot translate HRCA signal analysis results to a validated clinical measure of swallowing impairment. To resolve this major issue, we will innovate new deep learning approaches based on convolutional and recursive neural networks along with time-frequency representations of HRCA signals. Second, inverse modeling of the swallowing function is unfeasible with traditional signal processing methods. To address this issue, our new approach is based on generative adversarial networks applied to signals. The key transformative aspect of the proposed research consists of fundamental theoretical advancements of data analytics tools for swallowing difficulties, while translating the research into clinically applicable tools, but also tools applicable in other engineering (e.g., artificial intelligence) and clinical fields (e.g., electrophysiology). This proposal supports the NSERC 2020 strategic plan by developing data-driven healthcare approaches and interdisciplinary training opportunities focused on the cultivation of HQP's creativity, translational, and communication skills. Furthermore, the PI will also actively recruit and encourage participation of women and underrepresented minority HQP to the proposed project by expanding currently available opportunities at the University of Toronto. Lastly, the PI's close collaboration with clinical partners offers the opportunity to transfer academic results into mainstream clinical practices via research publications, tutorials, workshops, clinical grand rounds, and technology transfer activities.
吞咽困难(吞咽障碍)是与衰老和神经系统疾病相关的最常见问题,影响着数百万加拿大人的日常生活。目前,吞咽困难风险是在诊断金标准电视荧光镜检查之前通过筛查进行评估的,但许多无声误吸的患者通过了初步筛查。 PI 的长期研究目标是利用计算方法和仪器,将创新工程研究转化为吞咽困难的临床解决方案。因此,该提案的短期研究目标是将全新数据分析工具的进步与高分辨率颈部听诊(HRCA - 颈部加速度计和麦克风录音)相结合,以仪器筛查吞咽困难。教育目标是通过结合信号处理、机器学习和仪器仪表,为高素质人才 (HQP) 创造跨学科培训机会。 HQP 还将获得与衰老和神经系统疾病相关的主要健康问题的广泛知识,这些问题是加拿大医疗保健支出的主要来源。拟议的计划与当前的信号处理工作有很大不同,它专注于吞咽困难的信号处理和机器学习方法的创新。我们的变革性方法解决了当前信号处理障碍:首先,经典方法无法将 HRCA 信号分析结果转化为经过验证的吞咽障碍临床测量方法。为了解决这一重大问题,我们将基于卷积和递归神经网络以及 HRCA 信号的时频表示来创新新的深度学习方法。其次,吞咽功能的逆向建模用传统的信号处理方法是不可行的。为了解决这个问题,我们的新方法基于应用于信号的生成对抗网络。拟议研究的关键变革方面包括吞咽困难数据分析工具的基本理论进步,同时将研究转化为临床适用的工具,以及适用于其他工程(例如人工智能)和临床领域(例如电生理学)的工具)。 该提案通过开发数据驱动的医疗方法和跨学科培训机会来支持 NSERC 2020 战略计划,重点培养 HQP 的创造力、翻译和沟通技能。此外,PI 还将通过扩大多伦多大学现有的机会,积极招募和鼓励女性和代表性不足的少数族裔总部参与拟议项目。最后,PI 与临床合作伙伴的密切合作提供了通过研究出版物、教程、研讨会、临床大轮次和技术转让活动将学术成果转化为主流临床实践的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sejdic, Ervin其他文献
Multi-Disciplinary Challenges in Tissue Modeling for Wireless Electromagnetic Powering: A Review
- DOI:
10.1109/jsen.2017.2748338 - 发表时间:
2017-10-15 - 期刊:
- 影响因子:4.3
- 作者:
Bocan, Kara N.;Mickle, Marlin H.;Sejdic, Ervin - 通讯作者:
Sejdic, Ervin
A comparative analysis of spectral exponent estimation techniques for 1/f(β) processes with applications to the analysis of stride interval time series.
- DOI:
10.1016/j.jneumeth.2013.10.017 - 发表时间:
2014-01-30 - 期刊:
- 影响因子:3
- 作者:
Schaefer, Alexander;Brach, Jennifer S.;Perera, Subashan;Sejdic, Ervin - 通讯作者:
Sejdic, Ervin
Computational Deglutition Using signal- and image -processing methods to understand swallowing and associated disorders
- DOI:
10.1109/msp.2018.2875863 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:14.9
- 作者:
Sejdic, Ervin;Malandraki, Georgia A.;Coyle, James L. - 通讯作者:
Coyle, James L.
Understanding the statistical persistence of dual-axis swallowing accelerometry signals
- DOI:
10.1016/j.compbiomed.2010.09.002 - 发表时间:
2010-11-01 - 期刊:
- 影响因子:7.7
- 作者:
Sejdic, Ervin;Steele, Catriona M.;Chau, Tom - 通讯作者:
Chau, Tom
The effects of increased fluid viscosity on swallowing sounds in healthy adults
- DOI:
10.1186/1475-925x-12-90 - 发表时间:
2013-09-10 - 期刊:
- 影响因子:3.9
- 作者:
Jestrovic, Iva;Dudik, Joshua M.;Sejdic, Ervin - 通讯作者:
Sejdic, Ervin
Sejdic, Ervin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sejdic, Ervin', 18)}}的其他基金
Novel data analytics tools combined with high-resolution cervical auscultation are needed to instrumentally screen for dysphagia
需要新颖的数据分析工具与高分辨率颈部听诊相结合来仪器筛查吞咽困难
- 批准号:
RGPIN-2021-02724 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Automated detection process for heart diseases using advanced signal processing techniques
使用先进的信号处理技术对心脏病进行自动检测
- 批准号:
318741-2005 - 财政年份:2006
- 资助金额:
$ 3.35万 - 项目类别:
Postgraduate Scholarships - Doctoral
Automated detection process for heart diseases using advanced signal processing techniques
使用先进的信号处理技术对心脏病进行自动检测
- 批准号:
318741-2005 - 财政年份:2005
- 资助金额:
$ 3.35万 - 项目类别:
Postgraduate Scholarships - Doctoral
相似国自然基金
水下隧道泥质充填裂隙围岩灾变机理与数据驱动稳定性分析
- 批准号:52379106
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于引力波数据分析研究中子星相变及检验黑洞面积定律
- 批准号:12303056
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不完备工业时序数据特征分析
- 批准号:62306212
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
知识与数据混合驱动的含缺陷点阵结构不确定性分析与优化方法研究
- 批准号:12302149
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数字技术应用对发明人员研发行为的影响——基于专利发明人的大数据分析
- 批准号:72372152
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
相似海外基金
Targeting host lipid metabolism to limit tissue damage in necrotizing fasciitis
靶向宿主脂质代谢以限制坏死性筋膜炎的组织损伤
- 批准号:
10639904 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Helping Doctors Doctor: Using AI to Automate Documentation and "De-Autonomate" Health Care
帮助医生医生:使用人工智能实现文档自动化和医疗保健“去自动化”
- 批准号:
10701364 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Cloud-Based Machine Learning and Biomarker Visual Analytics for Salivary Proteomics
基于云的机器学习和唾液蛋白质组生物标志物可视化分析
- 批准号:
10827649 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别: