Multiagent trust modeling for trusted AI and improved online social networks
用于可信人工智能和改进的在线社交网络的多代理信任建模
基本信息
- 批准号:RGPIN-2021-02389
- 负责人:
- 金额:$ 4.66万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For over 20 years, artificial intelligence (AI) multiagent systems researchers have explored how best to model trustworthiness of agents, of value in selecting the most valuable partners for such applications as e-commerce. Methods for determining the most reputable agents have considered predicting future reliability based on past behaviour; there has also been effort in reasoning about the trustworthiness of peer advice about other agents. More recently, with increased attention on AI from organizations and individuals, the issue of trusted AI has come into focus as well: developing strategies for encouraging acceptance of AI solutions, allaying concerns and mistrust that may arise. The central premise of our research is that methods from multiagent trust modeling may hold the key in designing approaches for ensuring trusted AI. We will illustrate how lack of trust modeling handicaps general AI solutions and how the methods for calibrating trust-based models can be useful for assessing the value of varied efforts in trusted AI. Three key subgoals will be explored: mapping a solution for performing context-specific trust modeling; applying trust modeling to the critical social concern of digital misinformation; demonstrating how trust can serve to produce a more accessible and acceptable online networking environment for all users, understanding as well the role that opinion dynamics plays in bringing these communities together. Some primary methods used in our work will include Markov Decision Processes for progressively learning about trust from first principles, predicting future trustworthiness from past behaviour, integrating as well user modeling; simulations of trust modeling methods for calibrating and comparing, as is also done with the work on trust modeling testbeds; attuning solutions to user preferences including for assistive needs of users (older adults or those with some kind of impairment); reasoning about core groups of influencers in social networks through network dynamics; detecting digital misinformation through the modeling of authors and message raters, using a data-driven multi-faceted approach. This work will advance multiagent trust modeling, integrating Bayesian and data-driven methods and highlighting uses towards which trust is put. The impact of this work will be to enable significant steps forward with engendering trust in AI solutions through improved trust modeling methods. In Canada, organizations and individuals invested in seeing the benefits of AI will acquire better confidence in continuing to embrace these solutions. Users of social media challenged by questionable or overwhelming content will also emerge with a better footing. All of these considerations are ones with significant social value; the research agenda is one which should attract important participation from students of currently underrepresented groups, who will be sought for their unique expertise in AI and social networks.
20 多年来,人工智能 (AI) 多代理系统研究人员一直在探索如何最好地对代理的可信度进行建模,以帮助为电子商务等应用选择最有价值的合作伙伴。确定最有信誉的代理商的方法考虑了根据过去的行为预测未来的可靠性;我们还努力推理同行对其他代理人的建议的可信度。最近,随着组织和个人对人工智能的日益关注,可信人工智能问题也成为焦点:制定鼓励接受人工智能解决方案的策略,减轻可能出现的担忧和不信任。我们研究的核心前提是,多主体信任建模方法可能是设计确保可信人工智能方法的关键。我们将说明缺乏信任建模如何阻碍通用人工智能解决方案,以及校准基于信任的模型的方法如何有助于评估可信人工智能中各种努力的价值。将探讨三个关键子目标: 映射用于执行特定于上下文的信任建模的解决方案;将信任模型应用于数字错误信息的关键社会问题;展示信任如何为所有用户创造一个更容易访问和接受的在线网络环境,并了解舆论动态在将这些社区聚集在一起方面所发挥的作用。我们工作中使用的一些主要方法包括马尔可夫决策过程,用于逐步从第一原则中学习信任,根据过去的行为预测未来的可信度,以及集成用户建模;模拟用于校准和比较的信任建模方法,就像信任建模测试台的工作一样;根据用户偏好调整解决方案,包括满足用户(老年人或有某种障碍的人)的辅助需求;通过网络动态推理社交网络中影响者的核心群体;使用数据驱动的多方面方法,通过作者和消息评估者的建模来检测数字错误信息。这项工作将推进多主体信任建模,整合贝叶斯和数据驱动方法,并强调信任的用途。这项工作的影响将是通过改进的信任建模方法,在建立对人工智能解决方案的信任方面取得重大进展。在加拿大,投资于看到人工智能优势的组织和个人将获得更大的信心继续采用这些解决方案。受到可疑或压倒性内容挑战的社交媒体用户也将获得更好的立足点。所有这些考虑因素都具有重大的社会价值;研究议程应该吸引目前代表性不足群体的学生的重要参与,他们将因其在人工智能和社交网络方面的独特专业知识而受到青睐。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cohen, Robin其他文献
Federated against the cold: A trust-based federated learning approach to counter the cold start problem in recommendation systems
- DOI:
10.1016/j.ins.2022.04.027 - 发表时间:
2022-04-19 - 期刊:
- 影响因子:8.1
- 作者:
Wahab, Omar Abdel;Rjoub, Gaith;Cohen, Robin - 通讯作者:
Cohen, Robin
Towards Provably Moral AI Agents in Bottom-up Learning Frameworks
- DOI:
10.1145/3278721.3278728 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:0
- 作者:
Shaw, Nolan P.;Stockel, Andreas;Cohen, Robin - 通讯作者:
Cohen, Robin
Autonomous Vehicle Visual Signals for Pedestrians: Experiments and Design Recommendations
- DOI:
10.1109/iv47402.2020.9304628 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:0
- 作者:
Chen, Henry;Cohen, Robin;Czarnecki, Krzysztof - 通讯作者:
Czarnecki, Krzysztof
QOLLTI-F: measuring family carer quality of life
- DOI:
10.1177/0269216306072764 - 发表时间:
2006-01-01 - 期刊:
- 影响因子:4.4
- 作者:
Cohen, Robin;Leis, Anne M.;Ashbury, Fredrick D. - 通讯作者:
Ashbury, Fredrick D.
Multiagent Resource Allocation for Dynamic Task Arrivals with Preemption
- DOI:
10.1145/2875441 - 发表时间:
2016-10-01 - 期刊:
- 影响因子:5
- 作者:
Doucette, John A.;Pinhey, Graham;Cohen, Robin - 通讯作者:
Cohen, Robin
Cohen, Robin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cohen, Robin', 18)}}的其他基金
Multiagent trust modeling for trusted AI and improved online social networks
用于可信人工智能和改进的在线社交网络的多代理信任建模
- 批准号:
RGPIN-2021-02389 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence Trust Modeling in Multiagent Systems to Streamline Social Networking
多代理系统中的人工智能信任建模可简化社交网络
- 批准号:
RGPIN-2016-03615 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence Trust Modeling in Multiagent Systems to Streamline Social Networking
多代理系统中的人工智能信任建模可简化社交网络
- 批准号:
RGPIN-2016-03615 - 财政年份:2019
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence Trust Modeling in Multiagent Systems to Streamline Social Networking
多代理系统中的人工智能信任建模可简化社交网络
- 批准号:
RGPIN-2016-03615 - 财政年份:2018
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence Trust Modeling in Multiagent Systems to Streamline Social Networking
多代理系统中的人工智能信任建模可简化社交网络
- 批准号:
RGPIN-2016-03615 - 财政年份:2017
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence Trust Modeling in Multiagent Systems to Streamline Social Networking
多代理系统中的人工智能信任建模可简化社交网络
- 批准号:
RGPIN-2016-03615 - 财政年份:2016
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Trust and social networking of multiagent peers
多智能体对等体的信任和社交网络
- 批准号:
880-2011 - 财政年份:2015
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Trust and social networking of multiagent peers
多智能体对等体的信任和社交网络
- 批准号:
880-2011 - 财政年份:2014
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Trust and social networking of multiagent peers
多智能体对等体的信任和社交网络
- 批准号:
880-2011 - 财政年份:2013
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Trust and social networking of multiagent peers
多智能体对等体的信任和社交网络
- 批准号:
880-2011 - 财政年份:2012
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于多时相信息耦合的高光谱图像变化检测及跨语义评估
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于物相信息重建的水泥水化反向建模及辅助设计
- 批准号:62072213
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
基于植被指数斜率的地表覆盖变化检测方法研究
- 批准号:41501483
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
面向青光眼早期诊断的光学相干弹性成像方法研究
- 批准号:61475143
- 批准年份:2014
- 资助金额:80.0 万元
- 项目类别:面上项目
基于光热诱导位相信息的光学对比增强成像研究
- 批准号:61108083
- 批准年份:2011
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Multiagent trust modeling for trusted AI and improved online social networks
用于可信人工智能和改进的在线社交网络的多代理信任建模
- 批准号:
RGPIN-2021-02389 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence Trust Modeling in Multiagent Systems to Streamline Social Networking
多代理系统中的人工智能信任建模可简化社交网络
- 批准号:
RGPIN-2016-03615 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence Trust Modeling in Multiagent Systems to Streamline Social Networking
多代理系统中的人工智能信任建模可简化社交网络
- 批准号:
RGPIN-2016-03615 - 财政年份:2019
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence Trust Modeling in Multiagent Systems to Streamline Social Networking
多代理系统中的人工智能信任建模可简化社交网络
- 批准号:
RGPIN-2016-03615 - 财政年份:2018
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence Trust Modeling in Multiagent Systems to Streamline Social Networking
多代理系统中的人工智能信任建模可简化社交网络
- 批准号:
RGPIN-2016-03615 - 财政年份:2017
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual