Simulation-Driven Graphics and Fabrication
仿真驱动的图形和制造
基本信息
- 批准号:CRC-2021-00227
- 负责人:
- 金额:$ 7.29万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Canada Research Chairs
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Algorithms for computational physics serve as a computer's imagination, allowing the machine to ``visualize'' the outcome of complex, real-world interactions. These algorithms are used to drive the games we play, the movies we watch, to design cars, ships and planes and in countless other areas from architecture to medicine. But, while a person can imagine an object interacting with the world almost instantaneously, accurate physical simulations operate on time scales of hours, days or weeks. Computational Fabrication and Computer Graphics amplify the need for as-fast-as-a-person physics simulation. Additive manufacturing (identified by the World Economic Forum as a key emerging technology) allows for the ultra high-resolution control of geometry and material properties of fabricated objects. Predicting the performance of such designs in the real world often requires the solution of computational problems thousands of times larger than what was previously required in engineering disciplines. The over-arching goal of Professor Levin's research is to manifest this computational imagination by developing new machine learning techniques that understand physics and mechanics. His work tackles major difficulties in adapting standard machine learning techniques to large-scale problems in physics simulation. Levin focuses on creating algorithms that are robust to real-world input data, from LIDAR data generated by self-driving cars, to computer-aided designs created during the engineering design process. By leveraging these increasing sources of geometric information, Levin utilizes learning and data-driven approaches to create fast algorithms for physics simulation that can be orders-of-magnitude faster than standard approaches, but retain predictive accuracy. These methods enable scalable generative design across a myriad of engineering and computer graphics domains -- from aeronautical design to visual effects. Finally, Levin's work focuses on methods that are generalizable across large families of geometries and phenomenologies which can alleviate the need to train neural models for new examples -- conserving computational power and energy. Professor Levin's research enables a game changing shift in simulation performance and accuracy along with more environmentally friendly machine learning approaches than in other disciplines.
计算物理算法充当计算机的想象力,使机器能够“可视化”复杂的现实世界交互的结果。这些算法用于驱动我们玩的游戏、观看的电影、设计汽车、船舶和飞机以及从建筑到医学的无数其他领域。但是,虽然一个人几乎可以想象一个物体与世界即时互动,但准确的物理模拟需要在数小时、数天或数周的时间尺度上进行。计算制造和计算机图形放大了对像人一样快的物理模拟的需求。增材制造(被世界经济论坛确定为一项关键的新兴技术)可以对制造物体的几何形状和材料特性进行超高分辨率控制。预测此类设计在现实世界中的性能通常需要解决比以前工程学科所需的计算问题大数千倍的计算问题。莱文教授研究的首要目标是通过开发理解物理和力学的新机器学习技术来体现这种计算想象力。 他的工作解决了将标准机器学习技术应用于物理模拟中的大规模问题的主要困难。 Levin 专注于创建对现实世界输入数据稳健的算法,从自动驾驶汽车生成的激光雷达数据到工程设计过程中创建的计算机辅助设计。通过利用这些不断增加的几何信息源,Levin 利用学习和数据驱动的方法来创建物理模拟的快速算法,该算法比标准方法快几个数量级,但仍保持预测准确性。这些方法使得可扩展的生成设计能够跨越无数的工程和计算机图形领域——从航空设计到视觉效果。最后,莱文的工作重点是可在几何学和现象学大家族中推广的方法,这些方法可以减轻为新示例训练神经模型的需要 - 节省计算能力和能量。 Levin 教授的研究使模拟性能和准确性发生了改变,并提供了比其他学科更环保的机器学习方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Levin, David其他文献
A meta-analysis reveals that operational parameters influence levels of antibiotic resistance genes during anaerobic digestion of animal manures
- DOI:
10.1016/j.scitotenv.2021.152711 - 发表时间:
2022-01-03 - 期刊:
- 影响因子:9.8
- 作者:
Flores-Orozco, Daniel;Levin, David;Cicek, Nazim - 通讯作者:
Cicek, Nazim
Cage-free local deformations using green coordinates
使用绿色坐标的无笼局部变形
- DOI:
10.1007/s00371-010-0438-x - 发表时间:
2010-06 - 期刊:
- 影响因子:3.5
- 作者:
Luo, Xiaonan;Levin, David;Li, Zheng;Deng, Zhengjie;Liu, Dingyuan - 通讯作者:
Liu, Dingyuan
Between moving least-squares and moving least-l1
- DOI:
10.1007/s10543-014-0522-0 - 发表时间:
2015-09-01 - 期刊:
- 影响因子:1.5
- 作者:
Levin, David - 通讯作者:
Levin, David
One Simple Intervention Begets Another: Let's Get the Gestational Age Right First
- DOI:
10.1007/s10995-016-2003-3 - 发表时间:
2016-09-01 - 期刊:
- 影响因子:2.3
- 作者:
Levin, Julia;Gurau, David;Levin, David - 通讯作者:
Levin, David
Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405
- DOI:
10.1007/s00253-006-0316-7 - 发表时间:
2006-09-01 - 期刊:
- 影响因子:5
- 作者:
Islam, Rumana;Cicek, Nazim;Levin, David - 通讯作者:
Levin, David
Levin, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Levin, David', 18)}}的其他基金
Big Data for Fast and Accurate Numerical Simulation of Mechanical Structures
大数据用于快速准确的机械结构数值模拟
- 批准号:
RGPIN-2017-05524 - 财政年份:2022
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Process 11 Twin-Screw Extruder for Advanced Polymer Blending
用于高级聚合物共混的 Process 11 双螺杆挤出机
- 批准号:
RTI-2023-00228 - 财政年份:2022
- 资助金额:
$ 7.29万 - 项目类别:
Research Tools and Instruments
Bioengineering Next Generation Biopolymers
生物工程下一代生物聚合物
- 批准号:
RGPIN-2017-04945 - 财政年份:2021
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Simulation-Driven Graphics And Fabrication
仿真驱动的图形和制造
- 批准号:
CRC-2016-00078 - 财政年份:2021
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs
Big Data for Fast and Accurate Numerical Simulation of Mechanical Structures
大数据用于快速准确的机械结构数值模拟
- 批准号:
RGPIN-2017-05524 - 财政年份:2021
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Simulation-Driven Graphics and Fabrication
仿真驱动的图形和制造
- 批准号:
CRC-2016-00078 - 财政年份:2020
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs
Big Data for Fast and Accurate Numerical Simulation of Mechanical Structures
大数据用于快速准确的机械结构数值模拟
- 批准号:
RGPIN-2017-05524 - 财政年份:2020
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Bioengineering Next Generation Biopolymers
生物工程下一代生物聚合物
- 批准号:
RGPIN-2017-04945 - 财政年份:2020
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Big Data for Fast and Accurate Numerical Simulation of Mechanical Structures
大数据用于快速准确的机械结构数值模拟
- 批准号:
RGPIN-2017-05524 - 财政年份:2019
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Simulation-Driven Graphics and Fabrication
仿真驱动的图形和制造
- 批准号:
CRC-2016-00078 - 财政年份:2019
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs
相似国自然基金
斑图形成问题驱动的偏泛函微分方程的高余维分支研究
- 批准号:12371165
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
几类加速度驱动趋化模型和趋食模型解的动力学行为和斑图形成
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向航母舰载机物资保障的群组运动驱动“功能-空间”布局优化可视推演方法探索
- 批准号:61772474
- 批准年份:2017
- 资助金额:64.0 万元
- 项目类别:面上项目
性能驱动可编程自重构图形处理器体系结构研究
- 批准号:61602377
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
融入心理机制并数据学习的群体暴恐管控仿真计算模型及动画推演
- 批准号:61672469
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
A Study for Sketch-Driven Fluid Simulation in Computer Graphics
计算机图形学中草图驱动流体模拟的研究
- 批准号:
23K18514 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Simulation-Driven Graphics And Fabrication
仿真驱动的图形和制造
- 批准号:
CRC-2016-00078 - 财政年份:2021
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs
Simulation-Driven Graphics and Fabrication
仿真驱动的图形和制造
- 批准号:
CRC-2016-00078 - 财政年份:2020
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs
Simulation-Driven Graphics and Fabrication
仿真驱动的图形和制造
- 批准号:
CRC-2016-00078 - 财政年份:2019
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs
Simulation-Driven Graphics and Fabrication
仿真驱动的图形和制造
- 批准号:
CRC-2016-00078 - 财政年份:2018
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs