Ergodic theory of low-dimensional dynamical systems
低维动力系统的遍历理论
基本信息
- 批准号:RGPIN-2017-06521
- 负责人:
- 金额:$ 3.64万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to investigate dynamical properties of low-dimensional systems using methods from ergodic theory. In particular, I will develop the theory of core entropy of polynomials as recently introduced by W. Thurston. Properties of this function will be related to the geometry and topology of the Mandelbrot set, and will be used to better understand the geometry of the parameter space of polynomials of higher degree and rational maps. Moreover, I will investigate the ergodic theory of random walks on groups acting on spaces with hyperbolic properties, and derive applications to geometric group theory, Teichmueller dynamics and low-dimensional topology. This will extend the theory of random walks on Lie groups, as developed by Furstenberg, Margulis, Zimmer, and others, to groups of interest in geometry and topology such as the mapping class group and the group of outer automorphisms of the free group.
该项目的目的是使用来自厄运理论的方法研究低维系统的动力学特性。特别是,我将根据W. Thurston最近引入的多项式核心熵理论。该功能的属性将与Mandelbrot集的几何形状和拓扑相关,并将用于更好地了解高度和理性图的多项式参数空间的几何形状。此外,我将研究作用于具有双曲线特性空间的群体上的随机步行理论,并将应用于几何组理论,Teichmueller动力学和低维拓扑。这将把随机步行的理论扩展到弗斯滕伯格,马古利斯,齐默尔等人开发的谎言群体上,到了几何学和拓扑的群体,例如映射类群和自由组的外部自动形态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Tiozzo, Giulio其他文献
The fundamental inequality for cocompact Fuchsian groups
协紧 Fuchsian 群的基本不等式
- DOI:10.1017/fms.2022.9410.1017/fms.2022.94
- 发表时间:20222022
- 期刊:
- 影响因子:0
- 作者:Kosenko, Petr;Tiozzo, GiulioKosenko, Petr;Tiozzo, Giulio
- 通讯作者:Tiozzo, GiulioTiozzo, Giulio
Central limit theorems for counting measures in coarse negative curvature
粗负曲率计数测度的中心极限定理
- DOI:10.1112/s0010437x2200768010.1112/s0010437x22007680
- 发表时间:20222022
- 期刊:
- 影响因子:1.8
- 作者:Gekhtman, Ilya;Taylor, Samuel J.;Tiozzo, GiulioGekhtman, Ilya;Taylor, Samuel J.;Tiozzo, Giulio
- 通讯作者:Tiozzo, GiulioTiozzo, Giulio
A central limit theorem for random closed geodesics: Proof of the Chas–Li–Maskit conjecture
随机闭合测地线的中心极限定理:Chas-Li-Maskit 猜想的证明
- DOI:10.1016/j.aim.2019.10685210.1016/j.aim.2019.106852
- 发表时间:20192019
- 期刊:
- 影响因子:1.7
- 作者:Gekhtman, Ilya;Taylor, Samuel J.;Tiozzo, GiulioGekhtman, Ilya;Taylor, Samuel J.;Tiozzo, Giulio
- 通讯作者:Tiozzo, GiulioTiozzo, Giulio
Counting problems in graph products and relatively hyperbolic groups
图积和相对双曲群的计数问题
- DOI:10.1007/s11856-020-2008-x10.1007/s11856-020-2008-x
- 发表时间:20202020
- 期刊:
- 影响因子:1
- 作者:Gekhtman, Ilya;Taylor, Samuel J.;Tiozzo, GiulioGekhtman, Ilya;Taylor, Samuel J.;Tiozzo, Giulio
- 通讯作者:Tiozzo, GiulioTiozzo, Giulio
共 4 条
- 1
Tiozzo, Giulio的其他基金
Ergodic theory of low-dimensional dynamical systems
低维动力系统的遍历理论
- 批准号:RGPIN-2017-06521RGPIN-2017-06521
- 财政年份:2021
- 资助金额:$ 3.64万$ 3.64万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Ergodic theory of low-dimensional dynamical systems
低维动力系统的遍历理论
- 批准号:RGPIN-2017-06521RGPIN-2017-06521
- 财政年份:2020
- 资助金额:$ 3.64万$ 3.64万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Ergodic theory of low-dimensional dynamical systems
低维动力系统的遍历理论
- 批准号:RGPIN-2017-06521RGPIN-2017-06521
- 财政年份:2019
- 资助金额:$ 3.64万$ 3.64万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Ergodic theory of low-dimensional dynamical systems
低维动力系统的遍历理论
- 批准号:RGPIN-2017-06521RGPIN-2017-06521
- 财政年份:2018
- 资助金额:$ 3.64万$ 3.64万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Ergodic theory of low-dimensional dynamical systems
低维动力系统的遍历理论
- 批准号:RGPIN-2017-06521RGPIN-2017-06521
- 财政年份:2017
- 资助金额:$ 3.64万$ 3.64万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
相似国自然基金
融合多源低轨卫星数据解算日时变重力场的理论与方法
- 批准号:42374100
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
城市群发展对中国经济低碳转型的影响:理论机制与政策优化
- 批准号:72373015
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
基于先验信息与非凸方法的低管秩张量恢复理论与算法
- 批准号:12371094
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
多机协同的无人机控制信息高可靠低延时短包安全传输理论与方法
- 批准号:62371087
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
低共熔溶剂+CO2或H2S混合体系溶解度与比热容的实验及理论研究
- 批准号:52306217
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Ergodic theory of low-dimensional dynamical systems
低维动力系统的遍历理论
- 批准号:RGPIN-2017-06521RGPIN-2017-06521
- 财政年份:2021
- 资助金额:$ 3.64万$ 3.64万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Ergodic theory of low-dimensional dynamical systems
低维动力系统的遍历理论
- 批准号:RGPIN-2017-06521RGPIN-2017-06521
- 财政年份:2020
- 资助金额:$ 3.64万$ 3.64万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Ergodic theory of low-dimensional dynamical systems
低维动力系统的遍历理论
- 批准号:RGPIN-2017-06521RGPIN-2017-06521
- 财政年份:2019
- 资助金额:$ 3.64万$ 3.64万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Ergodic theory of low-dimensional dynamical systems
低维动力系统的遍历理论
- 批准号:RGPIN-2017-06521RGPIN-2017-06521
- 财政年份:2018
- 资助金额:$ 3.64万$ 3.64万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Ergodic theory of low-dimensional dynamical systems
低维动力系统的遍历理论
- 批准号:RGPIN-2017-06521RGPIN-2017-06521
- 财政年份:2017
- 资助金额:$ 3.64万$ 3.64万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual