Actin cytoskeleton: Regulation through protein interactions and epigenetic re-programming
肌动蛋白细胞骨架:通过蛋白质相互作用和表观遗传重编程进行调节
基本信息
- 批准号:RGPIN-2020-05388
- 负责人:
- 金额:$ 3.64万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The shape of each cell in the human body is determined by an internal structure called the cytoskeleton, which is a network of interconnected proteins that provides a "load-bearing" structure that enables movement and provides protection from potentially damaging external forces. Two of the most important cytoskeleton proteins are actin and myosin. Individual actin molecules can be joined together to form long fibres. Myosin is a large protein complex, composed of 2 heavy chains, 2 essential light chains and 2 regulatory light chains. Actin fibres and myosin complexes bind to each other, and when myosin is activated it pulls on the actin fibres they are bound to, shortening the length of actin-myosin fibres and leading to tension in the cytoskeleton network. Since the cytoskeleton is responsible for protecting cells from damaging external forces, it is important for cells to adjust the physical strength of their cytoskeleton to adapt to changing environments. An important way that cells reinforce their cytoskeleton is to activate the myosin complex to shrink the length of actin-myosin fibres. This actin-myosin fibre shortening produces cytoskeleton tension that makes cells physically stiffer. In addition to myosin activation, there may be changes in the collection of proteins that are associated with the cytoskeleton. In this proposal, we will identify the proteins that are part of the cytoskeleton when it is relaxed, and discover how the collection of associated proteins changes when the cytoskeleton becomes tense. If the environment undergoes long term changes in how it exerts pressure on cells, cells may compensate by rapidly changing how specific genes are expressed, and even by modifying their DNA to alter the long-term expression of genes that contribute to the cytoskeleton's physical strength. In this proposal, we will determine if cells "re-wire" their DNA to change gene expression patterns if cytoskeleton tension is prolonged, and we will identify the cytoskeleton-related genes that are expressed differently as a result of these DNA alterations. The experiments in this proposal will be the first to systematically examine how the complex of proteins in the cytoskeleton changes between the relaxed and contracted states, and how sustained cytoskeleton contraction alters the expression of genes encoding for proteins related to cytoskeleton organization and function. The proposed research will benefit Canadians by: 1) Leading to novel discoveries in cell biology and cytoskeleton regulation that will enhance Canada's scientific reputation and innovation potential; 2) Training of highly-qualified personnel to expand their career perspectives and increase future employability in academic or industrial biomedical research so that they may contribute to Canada's knowledge economy; 3) Development of novel multi-disciplinary approaches and generation of unique biological research tools that will be shared with the Canadian research community.
人体中每个细胞的形状由称为细胞骨架的内部结构决定,细胞骨架是相互连接的蛋白质网络,提供“承载”结构,使运动成为可能,并提供免受潜在破坏性外力影响的保护。两种最重要的细胞骨架蛋白是肌动蛋白和肌球蛋白。单个肌动蛋白分子可以连接在一起形成长纤维。肌球蛋白是一种大型蛋白质复合物,由 2 条重链、2 条必需轻链和 2 条调节轻链组成。肌动蛋白纤维和肌球蛋白复合物相互结合,当肌球蛋白被激活时,它会拉动它们所结合的肌动蛋白纤维,缩短肌动蛋白-肌球蛋白纤维的长度并导致细胞骨架网络紧张。由于细胞骨架负责保护细胞免受破坏性外力的影响,因此细胞调整其细胞骨架的物理强度以适应不断变化的环境非常重要。细胞增强细胞骨架的一个重要方法是激活肌球蛋白复合物以缩短肌动蛋白-肌球蛋白纤维的长度。这种肌动蛋白-肌球蛋白纤维的缩短会产生细胞骨架张力,使细胞身体变得更僵硬。除了肌球蛋白激活之外,与细胞骨架相关的蛋白质集合也可能发生变化。在这个提案中,我们将识别细胞骨架在松弛时属于其一部分的蛋白质,并发现当细胞骨架变得紧张时相关蛋白质的集合如何变化。如果环境对细胞施加压力的方式发生长期变化,细胞可能会通过快速改变特定基因的表达方式进行补偿,甚至通过修改DNA来改变有助于细胞骨架物理强度的基因的长期表达。在本提案中,我们将确定如果细胞骨架张力延长,细胞是否会“重新连接”其 DNA 以改变基因表达模式,并且我们将识别由于这些 DNA 改变而表达不同的细胞骨架相关基因。该提案中的实验将首次系统地研究细胞骨架中的蛋白质复合物如何在松弛和收缩状态之间变化,以及持续的细胞骨架收缩如何改变编码与细胞骨架组织和功能相关的蛋白质的基因的表达。拟议的研究将通过以下方式使加拿大人受益: 1)导致细胞生物学和细胞骨架调控方面的新发现,这将提高加拿大的科学声誉和创新潜力; 2)培养高素质人才,拓展他们的职业前景,提高未来学术或工业生物医学研究的就业能力,为加拿大的知识经济做出贡献; 3)开发新颖的多学科方法并生成将与加拿大研究界共享的独特生物研究工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olson, Michael其他文献
Succeeding in Rural Mental Health Practice: Being Sensitive to Culture by Fitting in and Collaborating
- DOI:
10.1007/s10591-013-9287-x - 发表时间:
2014-03-01 - 期刊:
- 影响因子:1.3
- 作者:
Bischoff, Richard J.;Reisbig, Allison M. J.;Olson, Michael - 通讯作者:
Olson, Michael
Flexion-relaxation response to gravity
- DOI:
10.1016/j.jbiomech.2005.09.009 - 发表时间:
2006-01-01 - 期刊:
- 影响因子:2.4
- 作者:
Olson, Michael;Solomonow, Moshe;Li, Li - 通讯作者:
Li, Li
The role of surface molecule CD229 in Multiple Myeloma
- DOI:
10.1016/j.clim.2018.10.006 - 发表时间:
2019-07-01 - 期刊:
- 影响因子:8.6
- 作者:
Olson, Michael;Radhakrishnan, Sabarinath Venniyil;Atanackovic, Djordje - 通讯作者:
Atanackovic, Djordje
Genomic Study on Blood Culture Isolates From Patients With Staphylococcus Infection-associated Glomerulonephritis.
- DOI:
10.1016/j.ekir.2022.07.010 - 发表时间:
2022-10 - 期刊:
- 影响因子:6
- 作者:
Rana, Pranav S. J. B.;Aljabban, Jihad;Prarat, Melanie;Pancholi, Preeti;Balada-Llasat, Joan Miquel;Stephens, Julie;Webb, Amy;Chen, Liang;Brodsky, Sergey, V;Nadasdy, Tibor;Zhang, Yan;Parikh, Samir, V;Wozniak, Daniel J.;Wang, Shu-Hua;Olson, Michael;Satoskar, Anjali A. - 通讯作者:
Satoskar, Anjali A.
On the relationship between automatic attitudes and self-reported sexual assault in men.
- DOI:
10.1007/s10508-012-9970-2 - 发表时间:
2013-07 - 期刊:
- 影响因子:3.8
- 作者:
Widman, Laura;Olson, Michael - 通讯作者:
Olson, Michael
Olson, Michael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olson, Michael', 18)}}的其他基金
Actin cytoskeleton: Regulation through protein interactions and epigenetic re-programming
肌动蛋白细胞骨架:通过蛋白质相互作用和表观遗传重编程进行调节
- 批准号:
RGPIN-2020-05388 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Actin cytoskeleton: Regulation through protein interactions and epigenetic re-programming
肌动蛋白细胞骨架:通过蛋白质相互作用和表观遗传重编程进行调节
- 批准号:
RGPIN-2020-05388 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
embedded systems
嵌入式系统
- 批准号:
529724-2018 - 财政年份:2018
- 资助金额:
$ 3.64万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Reinforcement Pulps & Pulp and Paper Products
增强纸浆
- 批准号:
468917-2014 - 财政年份:2014
- 资助金额:
$ 3.64万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
相似国自然基金
机械力通过Piezo1与细胞骨架作用环路抑制成纤维细胞线粒体分裂在压力性尿失禁发生中的机制研究
- 批准号:82301828
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
光控钙通道调节脊髓性肌萎缩症细胞骨架和核糖体的功能研究
- 批准号:82302108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
钙信号介导的细胞骨架动态组装调控破骨细胞功能的机制研究
- 批准号:82301042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微管相关蛋白TPPP3调节乙酰化tubulin致MCD患者足细胞骨架异常的机制研究
- 批准号:82300798
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蛋氨酸氧化酶MICAL1介导的细胞骨架动力学异常在创伤后应激障碍中的作用及机制
- 批准号:82373858
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
- 批准号:
10762273 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
- 批准号:
10736927 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
Regulation of GluN2B-NMDA Receptors by Interactions with the Actin Cytoskeleton
通过与肌动蛋白细胞骨架相互作用调节 GluN2B-NMDA 受体
- 批准号:
10606121 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
The role of biomolecular condensates in regulating the cytoskeleton.
生物分子缩合物在调节细胞骨架中的作用。
- 批准号:
10751631 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
A novel role for Wasl signaling in the regulation of skeletal patterning
Wasl 信号在骨骼模式调节中的新作用
- 批准号:
10718448 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别: