Neurophysiological and Metabolic Adaptations to Increased Ammonia and Oxygen Starvation in Fishes.

鱼类对氨和缺氧增加的神经生理和代谢适应。

基本信息

  • 批准号:
    RGPIN-2020-06923
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The overarching goal of my research is to determine how aquatic vertebrates cope with environmental stressors such as build-ups of internal ammonia and O2 starvation. Ammonia is a metabolic waste product that arises from the breakdown of excess amino acids, but at elevated concentrations it is neurotoxic. For this reason ammonia needs to be excreted or converted to less toxic nitrogenous waste (N-waste) products such as urea or uric acid, which are produced by terrestrial vertebrates. Due to its high water solubility, ammonia is the primary N-waste product of fishes because it can be excreted with relative ease across the gills to the water. However, fishes frequently have to cope with fluctuations in internal ammonia following feeding, exercise or exposure to high external ammonia. In mammals, an impaired ability to detoxify ammonia to urea (e.g. due to liver disease) leads to highly elevated ammonia in the body. This then results in "excitotoxicity" characterized by hyper-activation of the central nervous system (CNS), reactive oxygen species generation and increased brain water content leading to potentially fatal brain swelling. In contrast, we demonstrated that that brain swelling is readily tolerated by crucian carp and goldfish when exposed to ammonia and low environmental O2. This observation suggests that these fishes possess novel physiological mechanisms to protect the CNS from ammonia. Another notable finding of my NSERC Discovery work was that tolerance to elevated ammonia was linked to an ability to survive prolonged O2 starvation. Over the next 5 years, my students will test the hypothesis that this anoxia-ammonia cross-tolerance is due to the ability of these fishes to prevent excitotoxicity, high tolerance to oxidative stress, and resilience to brain swelling. My specific research objectives will be to: (I) Characterize the neurophysiological adaptations that protect the goldfish CNS from excitotoxic cell death during exposure to hypoxia or anoxia; (II) Contrast the mechanism(s) of ammonia toxicity and tolerance in the CNS of ammonia sensitive rainbow trout (Oncorhynchus mykiss) to those of the ammonia-tolerant goldfish; (III) Identify the link(s) between oxidative stress and the development of brain swelling in goldfish subjected to anoxia, hypoxia or ammonia exposure; (IV) Determine how elevated ammonia and feeding affect antioxidant capacity and neurophysiological processes in the Pacific hagfish and sea lamprey, two jawless fish species able to withstand ammonia and low O2. I will use an integrative research to address these objectives including whole animal models, isolated mitochondria, cultured brain slice models, molecular techniques, immunohistochemistry, and electrophysiology. This work will ultimately improve our understanding of the physiological adaptations used by fishes to cope with increased internal ammonia and O2 starvation, and identify the underlying mechanisms of anoxia-ammonia cross tolerance.
我研究的首要目标是确定水生脊椎动物如何应对环境压力源,例如体内氨的积累和氧气匮乏。氨是一种代谢废物,由过量氨基酸分解产生,但浓度升高时具有神经毒性。因此,氨需要排出体外或转化为毒性较低的含氮废物(N-废物)产品,例如陆生脊椎动物产生的尿素或尿酸。由于其高水溶性,氨是鱼类的主要氮废物,因为它可以相对容易地通过鳃排泄到水中。然而,鱼类经常必须应对进食、运动或暴露于高外部氨后体内氨的波动。在哺乳动物中,将氨解毒为尿素的能力受损(例如由于肝脏疾病)导致体内氨高度升高。这会导致“兴奋性毒性”,其特征是中枢神经系统(CNS)过度激活、活性氧生成和脑含水量增加,从而导致潜在致命的脑肿胀。相比之下,我们证明,当鲫鱼和金鱼暴露于氨和低环境氧气时,脑肿胀很容易耐受。这一观察结果表明,这些鱼类具有保护中枢神经系统免受氨侵害的新生理机制。我的 NSERC Discovery 工作的另一个值得注意的发现是,对氨升高的耐受性与长期缺氧的生存能力有关。在接下来的五年里,我的学生将检验这样一个假设:这种缺氧-氨交叉耐受性是由于这些鱼具有防止兴奋性毒性、对氧化应激的高耐受性和对脑肿胀的恢复能力的能力。我的具体研究目标是:(I)表征在缺氧或缺氧期间保护金鱼中枢神经系统免受兴奋性毒性细胞死亡的神经生理学适应; (II) 对比氨敏感性虹鳟(Oncorhynchus mykiss)与耐氨金鱼的中枢神经系统氨毒性和耐受性机制; (III) 确定氧化应激与缺氧、缺氧或氨暴露金鱼脑肿胀之间的联系; (IV) 确定升高的氨和摄食如何影响太平洋盲鳗和七鳃鳗的抗氧化能力和神经生理过程,这两种无颌鱼类能够承受氨和低氧气。我将利用综合研究来实现这些目标,包括整个动物模型、分离的线粒体、培养的脑切片模型、分子技术、免疫组织化学和电生理学。这项工作最终将提高我们对鱼类应对体内氨和氧气饥饿增加的生理适应的理解,并确定缺氧-氨交叉耐受的潜在机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wilkie, Michael其他文献

Wilkie, Michael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wilkie, Michael', 18)}}的其他基金

Neurophysiological and Metabolic Adaptations to Increased Ammonia and Oxygen Starvation in Fishes.
鱼类对氨和缺氧增加的神经生理和代谢适应。
  • 批准号:
    RGPIN-2020-06923
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Neurophysiological and Metabolic Adaptations to Increased Ammonia and Oxygen Starvation in Fishes.
鱼类对氨和缺氧增加的神经生理和代谢适应。
  • 批准号:
    RGPIN-2020-06923
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
The Neurophysiological Basis of Ammonia Toxicity and Tolerance in Fishes
鱼类氨毒性和耐受性的神经生理学基础
  • 批准号:
    RGPIN-2015-04248
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
The Neurophysiological Basis of Ammonia Toxicity and Tolerance in Fishes
鱼类氨毒性和耐受性的神经生理学基础
  • 批准号:
    RGPIN-2015-04248
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
The Neurophysiological Basis of Ammonia Toxicity and Tolerance in Fishes
鱼类氨毒性和耐受性的神经生理学基础
  • 批准号:
    RGPIN-2015-04248
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
The Neurophysiological Basis of Ammonia Toxicity and Tolerance in Fishes
鱼类氨毒性和耐受性的神经生理学基础
  • 批准号:
    RGPIN-2015-04248
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
The Neurophysiological Basis of Ammonia Toxicity and Tolerance in Fishes
鱼类氨毒性和耐受性的神经生理学基础
  • 批准号:
    RGPIN-2015-04248
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanisms of nitrogen excretion, toxicity and tolerance in ancient and modern fishes
古代和现代鱼类的氮排泄、毒性和耐受性机制
  • 批准号:
    194686-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanisms of nitrogen excretion, toxicity and tolerance in ancient and modern fishes
古代和现代鱼类的氮排泄、毒性和耐受性机制
  • 批准号:
    194686-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanisms of nitrogen excretion, toxicity and tolerance in ancient and modern fishes
古代和现代鱼类的氮排泄、毒性和耐受性机制
  • 批准号:
    194686-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于空间代谢流技术探究人参-远志药对通过纠偏单胺类神经递质代谢紊乱治疗阿尔茨海默病的整合作用模式
  • 批准号:
    82304894
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于宏基因组和代谢组解析沙芥属植物土壤自毒物质累积致害机制
  • 批准号:
    32360742
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
  • 批准号:
    82373082
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于ChREBP乙酰化介导脂肪酸代谢探讨“肝病及心”理论内涵及降脂消斑方干预研究
  • 批准号:
    82374192
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Cold climate adaptations and human metabolic variation
寒冷气候适应和人类代谢变化
  • 批准号:
    2316163
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Investigating the role of maternal gut microbiota in metabolic adaptations to pregnancy
研究母体肠道微生物群在妊娠代谢适应中的作用
  • 批准号:
    569020-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Targeting invasive plasticity by inhibiting mitochondrial adaptations to matrix metalloproteinase loss
通过抑制线粒体对基质金属蛋白酶损失的适应来靶向侵入可塑性
  • 批准号:
    10430819
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
Developing an evolutionary model for metabolic syndrome: understanding energy sparing adaptations in geothermal populations of stickleback
开发代谢综合征的进化模型:了解刺鱼地热种群的能量节约适应
  • 批准号:
    BB/W002515/1
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
Targeting invasive plasticity by inhibiting mitochondrial adaptations to matrix metalloproteinase loss
通过抑制线粒体对基质金属蛋白酶损失的适应来靶向侵入可塑性
  • 批准号:
    10684722
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了