Universal Soldier: A deep neural net for unsupervised 3D segmentation of tomographic images of bones
Universal Soldier:用于骨骼断层图像无监督 3D 分割的深度神经网络
基本信息
- 批准号:576736-2022
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Universal Soldier Deep Net is an artificial convolutional neural net for image analysis. The Universal Soldier, or USDNet, will be the output of this collaborative project between Prof. Natalie Reznikov and Object Research Systems (ORS) Inc. (Montréal), whose product is the software Dragonfly for comprehensive 3D image analysis. The purpose is to design and train a deep artificial neural network (the Universal Soldier) that will be capable of unsupervised segmentation of 3D images of bones as acquired by various X-ray-based methods. Currently, image segmentation - i.e. the identification and accurate tagging of relevant features in 3D - is a bottleneck of bioimaging, largely because of the high degree of hierarchical complexity in biological objects (such as bones), together with the large footprint of accrued 3D data. Automated, unbiased segmentation of 3D datasets would abolish these limitations and increase the precision of quantitative image analysis, with high throughput. From 2020-22, we collected a vast library of 3D tomographic images of bones of various animals (including humans), acquired using X-ray computed tomography (CT) scanners, with resolutions ranging from 1 µm to 60 µm, and with a variety of naturally occurring artifacts. The library is currently structured as an SQL repository and contains about 2 TB of raw images, as well as expertly processed subsamples of raw data (training data, or "ground truth", about 5%). Having this library, as part of this proposed project we will now design and train the USDNet that will be able to recognize skeletal elements in any scan and produce unsupervised, high-fidelity automated segmentation. This Universal Soldier will become part of the image analysis software Dragonfly available to skeletal biologists and bioimaging researchers free of charge. This will popularize artificial intelligence-aided methodologies in the life sciences, will make quantitative 3D image analysis fast, streamlined and immune to cognitive biases. Like self-driving cars have become a reality today, automated segmentation using a pre-trained Universal Soldier Deep Net we believe will transform bioimaging tomorrow.
Universal Soldier Deep Net 是一种用于图像分析的人工卷积神经网络,Universal Soldier(简称 USDNet)将是 Natalie Reznikov 教授和 Object Research Systems (ORS) Inc.(蒙特利尔)合作项目的成果,该项目的产品是该公司的产品。 Dragonfly 是一款用于全面 3D 图像分析的软件,其目的是设计和训练深度人工神经网络(Universal Soldier),该网络能够对通过各种基于 X 射线获得的骨骼 3D 图像进行无监督分割。目前,图像分割(即 3D 中相关特征的识别和准确标记)是生物成像的瓶颈,很大程度上是因为生物对象(例如骨骼)的层次结构高度复杂,以及累积的大量足迹。 3D 数据集的自动化、无偏差分割将消除这些限制并提高定量图像分析的精度,从 2020-22 年起,我们收集了一个庞大的数据库。使用 X 射线计算机断层扫描 (CT) 扫描仪获取的各种动物(包括人类)骨骼的 3D 断层扫描图像,分辨率范围为 1 µm 至 60 µm,并包含各种自然产生的伪影。该库目前的结构如下。一个 SQL 存储库,包含约 2 TB 的原始图像,以及经过专业处理的原始数据子样本(训练数据或“基本事实”,约 5%)。作为这个拟议项目的一部分,我们现在将设计和训练 USDNet,它将能够识别任何扫描中的骨骼元素并产生无监督的高保真自动分割。这个 Universal Soldier 将成为骨骼生物学家可用的图像分析软件 Dragonfly 的一部分。和生物成像研究人员免费,这将普及生命科学领域的人工智能辅助方法,使定量 3D 图像分析变得快速、简化且不受认知偏差的影响,就像今天的自动驾驶汽车一样,使用预先训练的通用士兵深度网络进行自动分割,我们相信明天将改变生物成像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reznikov, NatalieN其他文献
Reznikov, NatalieN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reznikov, NatalieN', 18)}}的其他基金
Upsampling of low-resolution/large-volume 3D tomographic images using generative adversarial neural networks applied to biological anthropology, medical imaging, and evolutionary biology
使用应用于生物人类学、医学成像和进化生物学的生成对抗神经网络对低分辨率/大容量 3D 断层扫描图像进行上采样
- 批准号:
571519-2021 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Alliance Grants
相似国自然基金
创业传奇中的英雄与士兵:内隐创业型领导与积极追随力的跨层次互动作用机制研究
- 批准号:71802025
- 批准年份:2018
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
紛争後国家と社会の信頼醸成:社会再統合後の元兵士、コミュニティ、エリートの関係
建立对冲突后国家和社会的信心:重返社会后前战斗人员、社区和精英之间的关系
- 批准号:
24K00214 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Black Soldier Fly Pilot Trial - Innovative Black Soldier Fly (BSF) Micro Farm (MF) Project, reclaiming waste feed inputs and converting it into proteins for animal feed
黑水虻试点试验 - 创新的黑水虻 (BSF) 微型农场 (MF) 项目,回收废弃饲料投入并将其转化为动物饲料的蛋白质
- 批准号:
10071795 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Collaborative R&D
Functional analysis of an LGN-based visual prosthesis
基于 LGN 的视觉假体的功能分析
- 批准号:
10582766 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
The Intersectionality of Women's Military Experiences, Gender and Ethnicity in Contemporary Israel
当代以色列女性军事经历、性别和种族的交叉性
- 批准号:
22KJ0986 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for JSPS Fellows