Nanoscale Characterization and Aim-Specific Design of Amorphous Materials

非晶材料的纳米级表征和特定目标设计

基本信息

  • 批准号:
    RGPIN-2021-02544
  • 负责人:
  • 金额:
    $ 2.33万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Properties of materials are being explored both for fundamental research and engineering applications. Specifically, mechanical properties of materials (e.g., strength, stiffness, and deformation) are important for all aspects of human civilization, including energy, transportation, and communication. However, the existence of lattice-based (i.e., periodic) microstructures limits the mechanical operation and the lifetime of materials. This research program proposes to investigate amorphous metal alloys by measuring their local mechanical properties to ultimately enable their aim-specific design. Conventional mechanical characterization techniques (e.g., compression, tension tests) only measure area/volume-averaged properties. As a result, it is not well-understood how deviations from the ideal lattice in disordered materials alter the local mechanical properties and thus, the governing physical and mechanical principles at the relevant length scales, i.e., nanometers. Furthermore, the lack of this basic knowledge hampers engineers and scientists in their efforts to establish the structure-property relationship of amorphous metals. To fill this fundamental gap, our research program will focus on the local mechanical characterization of disordered metal alloy compounds such as bulk metallic glasses, i.e., amorphous metals with no periodic crystal structure that is stronger than steel while being more resistant to wear and corrosion than regular metals. The intellectual merit of the proposed research program is that it will deliver the direct and accurate determination of the mechanical properties and deformation mechanisms of amorphous materials across different length scales as a function of the preparation history, sample size, alloy composition, and probing volume while enabling structure-property relationships facilitated by novel sample preparation (e.g., thermoplastic forming) and characterization techniques (e.g., scanning probe microscopy). The knowledge gained from this program is anticipated to have a critical impact on the targeted design and the microstructural understanding of damage mechanisms in amorphous metals, which will aid in novel industrial and defense applications in Canada. The ability to optimize the metal alloy compositions for specific needs of the steel and manufacturing industries is expected to contribute to high-technology applications while enhancing the competitiveness of Canadian companies. Beyond its scientific, technological, and industrial impact, one of the main thrusts of this program is the training of several highly qualified personnel (HQP) in an equal, diverse, inclusive, and intellectually stimulating environment. The trained HQP will be equipped with unique skills and hands-on experience in an area that combines multidisciplinary expertise to perform investigations of materials at the nanoscale and to implement new experimental approaches while meeting the academic and industrial demands in Canada.
材料的特性既可以用于基础研究和工程应用。具体而言,材料的机械性能(例如强度,刚度和变形)对于人类文明的各个方面都很重要,包括能量,运输和通信。但是,基于晶格的(即周期性)微结构的存在限制了材料的机械操作和寿命。该研究计划建议通过测量其局部机械性能来研究无定形金属合金,以最终使其特定于AIM的设计。常规的机械表征技术(例如压缩,张力测试)仅测量面积/体积平均特性。结果,并不理解无序材料中理想晶格的偏差如何改变局部机械性能,因此,在相关的长度尺度(即纳米)上,统治物理和机械原理的管理。此外,缺乏这种基本知识阻碍了工程师和科学家在建立无定形金属的结构性关系的努力中。为了填补这一基本差距,我们的研究计划将重点介绍无序金属合金化合物的局部机械表征,例如散装金属玻璃,即没有周期性晶体结构,其周期性晶体结构比钢更强,而比钢制更强,而比常规金属更耐磨损和腐蚀。拟议的研究计划的智力优点是,它将直接,准确地确定不同长度尺度上无定形材料的机械性能和变形机制,这是制备历史记录,样本量,合金组成和探测量的函数,同时通过新型样品制剂促进(E.G.,extrastic)(E.G.,表现力)(例如,表现力)(例如,均匀的形式)(例如)显微镜)。预计从该计划中获得的知识将对目标设计以及对无定形金属损伤机制的微观结构理解产生关键影响,这将有助于加拿大的新工业和国防应用。预计为钢和制造业的特定需求优化金属合金组成的能力有望为高科技应用做出贡献,同时增强加拿大公司的竞争力。除了其科学,技术和工业影响外,该计划的主要目的之一是对几位高素质的人员(HQP)进行平等,多样,包容和智力刺激的环境的培训。训练有素的HQP将在结合多学科专业知识的领域中配备独特的技能和动手经验,以对纳米级进行材料进行调查,并在满足加拿大的学术和工业需求的同时实施新的实验方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dagdeviren, Omur其他文献

Dagdeviren, Omur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dagdeviren, Omur', 18)}}的其他基金

Nanoscale Characterization and Aim-Specific Design of Amorphous Materials
非晶材料的纳米级表征和特定目标设计
  • 批准号:
    RGPIN-2021-02544
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Nanoscale Characterization and Aim-Specific Design of Amorphous Materials
非晶材料的纳米级表征和特定目标设计
  • 批准号:
    DGECR-2021-00044
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Launch Supplement
Revealing the Exciton Dynamics and Challenging the Existence of Trapped-Excitons
揭示激子动力学并挑战俘获激子的存在
  • 批准号:
    557117-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Banting Postdoctoral Fellowships Tri-council

相似国自然基金

智慧城市导向下基于街景视觉表征的“人-环境”数字互联机制
  • 批准号:
    52308015
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
  • 批准号:
    22379027
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
轻量化多功能因瓦合金多孔材料增材制造与性能表征评价
  • 批准号:
    12372133
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
空间包络误差表征下五轴机床装配精度衍生机理与层递调控机制
  • 批准号:
    52365064
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于物理规律自适应表征的地震数据智能编码采集方法研究
  • 批准号:
    42374222
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

ERI: Non-Contact Ultrasound Generation and Detection for Tissue Functional Imaging and Biomechanical Characterization
ERI:用于组织功能成像和生物力学表征的非接触式超声波生成和检测
  • 批准号:
    2347575
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
RUI: Spectroscopic Characterization and Low Temperature Kinetic Study of Hydrogenated Aromatic Radicals
RUI:氢化芳香族自由基的光谱表征和低温动力学研究
  • 批准号:
    2348916
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
CAREER: atomistic characterization of protein-polymer conjugates
职业:蛋白质-聚合物缀合物的原子表征
  • 批准号:
    2339330
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Continuing Grant
A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterization of dominant negative ACTA2 variants : a zebrafish model for non-syndromic aortic aneurysms
显性失活 ACTA2 变异的表征:非综合征性主动脉瘤的斑马鱼模型
  • 批准号:
    24K18891
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了