Using Analytics to Improve Trust in Software Ecosystems

使用分析来提高对软件生态系统的信任

基本信息

  • 批准号:
    RGPIN-2020-06811
  • 负责人:
  • 金额:
    $ 3.5万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

A software ecosystem is the interaction of a set of actors (e.g., code contributors and consumers) on top of a common technological platform (e.g., Node.js) that results in a number of software solutions or services. These software ecosystems allow developers to easily share and reuse other's code, reducing development time. The openness of these ecosystems, which allows anyone to contribute and/or reuse code, is a major contributor to their success and rapid growth. For example, the node package manager (npm) hosts approximately 1.2 million packages. Although this openness is generally a positive trait, it also poses a major risk since it requires consumers to trust the ecosystem contributor's developers/organizations - people they generally know very little about. This notion of trust needs to be better understood and supported if ecosystems are to thrive in the future. Therefore, the objective of the proposed research is to improve trust in software ecosystems. Specifically, I plan to accomplish my objective by 1) empirically examining trust-related issues faced by ecosystem consumers; 2) developing actionable analytics and models to help warn about trust issues in ecosystem contributions; and 3) providing mitigations for trust-related issues facing ecosystem consumers. The successful completion of this program will enable ecosystem consumers better leverage software ecosystems. Consumers of the ecosystem will have novel analytics and models to gauge how well they can trust their dependencies. Also, ecosystem consumers will have potential mitigations that they can apply to help increase trust in the ecosystem contributions they depend on. Large-scale empirical studies will be performed to validate the effectiveness of the proposed analytics, models and mitigations. These empirical studies will be performed using many different ecosystems, analysis techniques and involve multiple stakeholders to to improve the generalizability of the program's outcomes. The proposed research will have a direct impact on the software engineering research and practice because it will advance the field by providing pragmatic techniques, based on novel, actionable analytics and models. Furthermore, the proposed research will expose, train and enable highly qualified personnel to learn and contribute to the state-of-the-art in the increasingly important topic of software ecosystems.
软件生态系统是一组参与者(例如,代码贡献者和消费者)的相互作用,在通用技术平台(例如Node.js)之上,它导致了许多软件解决方案或服务。这些软件生态系统使开发人员可以轻松共享和重复使用他人的代码,从而减少开发时间。这些生态系统的开放性,允许任何人贡献和/或重复使用代码,是他们成功和快速增长的主要贡献者。例如,节点软件包管理器(NPM)托管约120万包。尽管这种开放性通常是一个积极的特征,但它也带来了主要风险,因为它要求消费者信任生态系统贡献者的开发商/组织 - 他们一般不认识的人。如果生态系统将来要蓬勃发展,则需要更好地理解和支持这种信任的概念。因此,拟议的研究的目的是提高对软件生态系统的信任。具体而言,我计划通过1)实现生态系统消费者面临的与信任相关的问题来实现我的目标; 2)开发可行的分析和模型,以帮助警告生态系统贡献中的信任问题; 3)为生态系统消费者面临的与信任有关的问题提供缓解。该程序的成功完成将使生态系统消费者更好地利用软件生态系统。生态系统的消费者将拥有新颖的分析和模型,以评估他们能够信任自己的依赖性的程度。此外,生态系统消费者将具有潜在的缓解措施,以帮助增加对他们依赖的生态系统贡献的信任。将进行大规模的经验研究,以验证拟议的分析,模型和缓解的有效性。这些经验研究将使用许多不同的生态系统,分析技术进行,并涉及多个利益相关者,以提高计划结果的普遍性。拟议的研究将对软件工程研究和实践产生直接影响,因为它将通过基于新颖,可行的分析和模型提供实用技术来推进该领域。此外,拟议的研究将揭示,训练和使高素质的人员能够学习并为软件生态系统越来越重要的主题中的最先进做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shihab, Emad其他文献

Challenges in Chatbot Development: A Study of Stack Overflow Posts
A Large-Scale Empirical Study of Just-in-Time Quality Assurance
  • DOI:
    10.1109/tse.2012.70
  • 发表时间:
    2013-06-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Kamei, Yasutaka;Shihab, Emad;Ubayashi, Naoyasu
  • 通讯作者:
    Ubayashi, Naoyasu
A Comparison of Natural Language Understanding Platforms for Chatbots in Software Engineering
Why Do Developers Use Trivial Packages? An Empirical Case Study on npm
Commit Guru: Analytics and Risk Prediction of Software Commits

Shihab, Emad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shihab, Emad', 18)}}的其他基金

Using Analytics to Improve Trust in Software Ecosystems
使用分析来提高对软件生态系统的信任
  • 批准号:
    RGPAS-2020-00087
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Using Analytics to Improve Trust in Software Ecosystems
使用分析来提高对软件生态系统的信任
  • 批准号:
    RGPIN-2020-06811
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
AskGit: Chat with your Software Project (Lab2Market)
AskGit:与您的软件项目聊天 (Lab2Market)
  • 批准号:
    571242-2022
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Idea to Innovation
A Training Program on the Development, Deployment and Servicing of Artificial Intelligence-based Software Systems
基于人工智能的软件系统的开发、部署和服务培训计划
  • 批准号:
    555406-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Collaborative Research and Training Experience
Using Analytics to Improve Trust in Software Ecosystems
使用分析来提高对软件生态系统的信任
  • 批准号:
    RGPAS-2020-00087
  • 财政年份:
    2020
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Using Analytics to Improve Trust in Software Ecosystems
使用分析来提高对软件生态系统的信任
  • 批准号:
    RGPIN-2020-06811
  • 财政年份:
    2020
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Using big data analytics to improve decision making of system-on-module based solutions
使用大数据分析来改进基于模块系统的解决方案的决策
  • 批准号:
    506894-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Strategic Projects - Group
Detecting and Recommending Mitigations for Impactful Risky Software Changes
检测有影响的风险软件变更并提出缓解措施
  • 批准号:
    RGPIN-2015-06545
  • 财政年份:
    2019
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Detecting and Recommending Mitigations for Impactful Risky Software Changes
检测有影响的风险软件变更并提出缓解措施
  • 批准号:
    RGPIN-2015-06545
  • 财政年份:
    2018
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Using big data analytics to improve decision making of system-on-module based solutions
使用大数据分析来改进基于模块系统的解决方案的决策
  • 批准号:
    506894-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Strategic Projects - Group

相似国自然基金

基于"能源-环境-健康"框架的区域节能减排效率分析与提升研究-以长三角为例
  • 批准号:
    72304115
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
未知危险场景下智能汽车环境感知系统性能劣化机理分析与自进化提升方法研究
  • 批准号:
    52372408
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于真实世界数据质量的提升机器学习建模效果的人机协同及可视分析的研究
  • 批准号:
    62372298
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
MMC型多端口电力电子变压器非线性特性影响分析及运行性能提升研究
  • 批准号:
    52377180
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
人机协同反馈对学生在线学习行为的影响研究
  • 批准号:
    72304057
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Partners IN CONTROL: Using Remote MonitorINg teChnology with cOmmuNity healTh woRkers to support hypertensiOn management for Latinx patients
控制合作伙伴:与社区卫生工作者一起使用远程监测技术来支持拉丁裔患者的高血压管理
  • 批准号:
    10669469
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
Using spatial analytics and social determinants of health to redefine critical access to medical transport services for rural populations
利用空间分析和健康的社会决定因素重新定义农村人口获得医疗运输服务的关键途径
  • 批准号:
    10643235
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
Data to Clinical Action: Using Predictive Analytics to Improve Care of Veterans with Opioid Use Disorder
数据到临床行动:使用预测分析来改善对患有阿片类药物使用障碍的退伍军人的护理
  • 批准号:
    10317224
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
Using Analytics to Improve Trust in Software Ecosystems
使用分析来提高对软件生态系统的信任
  • 批准号:
    RGPAS-2020-00087
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Using Modern Data Science Methods and Advanced Analytics to Improve the Efficiency, Reliability, and Timeliness of Cardiac Surgical Quality Data
使用现代数据科学方法和高级分析来提高心脏手术质量数据的效率、可靠性和及时性
  • 批准号:
    10364433
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了