Molecular Photonics in the Strong Coupling Regime

强耦合状态下的分子光子学

基本信息

  • 批准号:
    RGPIN-2020-06566
  • 负责人:
  • 金额:
    $ 3.64万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Light-matter interaction is at the heart of most optical phenomena that we are familiar with such as absorption, emission and scattering. We normally treat these by assuming that light does not significantly modify the underlying electronic states of the material it interacts with. The extreme case where light-matter interaction is so strong that this assumption fails has been coined the strong coupling regime. In this regime, new half-light, half-matter quasiparticles called polaritons emerge. In thin films of organic semiconductors--the same class of materials used in display technologies and low-cost solar cells--polaritons can readily form at room temperature. This Program will study collective quantum phenomena in the strong-coupling regime. It will focus on two distinct regimes, where fascinating physics occur. First, at high densities, polaritons can form a macroscopic quantum state termed a Bose-Einstein condensate. We will engineer a novel type of polariton condensate, based on open-shell molecules that will allow for magneto-optical effects to emerge. In addition, we will use lattices of polariton condensates to simulate a complex phenomenon known as many-body localization. This will allow us to gain further understanding of the barrier between quantum and classical physics. Second, at low densities, the emergence of strong light-matter coupling can modify molecular processes that occur within or between organic molecules. The extent to which these processes can be modified depends strongly on the number of molecules per optical mode in the system. We will investigate modifications of two processes directly relevant to increasing the efficiency of organic light-emitting diodes: reverse intersystem crossing and triplet-triplet annihilation. By engineering nanoscale optical cavities, we will reach a regime where the rates for these processes can be significantly enhanced. The findings from this Program will have direct applications in sensing, optoelectronics and our ability to simulate complex quantum systems. At completion, the Program will have trained 3 PhD, 2 MSc and 5 undergraduate students with a broad skill set in photonics, semiconductor science, quantum technologies and nanofabrication highly needed to support priority areas in Canada's technology industry.
光与物质的相互作用是我们熟悉的大多数光学现象的核心,例如吸收、发射和散射。我们通常通过假设光不会显着改变与其相互作用的材料的基础电子状态来对待这些问题。光与物质相互作用如此强烈以至于该假设失效的极端情况被称为强耦合机制。在这种情况下,出现了称为极化激元的新的半光半物质准粒子。在有机半导体薄膜(显示技术和低成本太阳能电池中使用的同一类材料)中,极化激元可以在室温下轻松形成。该计划将研究强耦合体系中的集体量子现象。它将重点关注两个不同的领域,其中发生了令人着迷的物理现象。首先,在高密度下,极化子可以形成称为玻色-爱因斯坦凝聚的宏观量子态。我们将设计一种基于开壳层分子的新型极化子凝聚物,该分子将允许出现磁光效应。此外,我们将使用极化子凝聚晶格来模拟一种称为多体局域化的复杂现象。这将使我们进一步了解量子物理学和经典物理学之间的障碍。其次,在低密度下,强光-物质耦合的出现可以改变有机分子内部或之间发生的分子过程。这些过程可以修改的程度很大程度上取决于系统中每个光学模式的分子数量。我们将研究与提高有机发光二极管效率直接相关的两个过程的修改:反向系间窜越和三重态-三重态湮灭。通过设计纳米级光学腔,我们将达到可以显着提高这些过程的速率的状态。该计划的研究结果将直接应用于传感、光电子学以及我们模拟复杂量子系统的能力。项目完成后,将培养 3 名博士生、2 名硕士生和 5 名本科生,他们拥有光子学、半导体科学、量子技术和纳米制造方面的广泛技能,这些技能是支持加拿大科技行业优先领域所急需的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KénaCohen, Stéphane其他文献

KénaCohen, Stéphane的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KénaCohen, Stéphane', 18)}}的其他基金

Molecular Photonics in the Strong Coupling Regime
强耦合状态下的分子光子学
  • 批准号:
    RGPIN-2020-06566
  • 财政年份:
    2022
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Light-Matter Photonics
光物质光子学
  • 批准号:
    CRC-2020-00295
  • 财政年份:
    2022
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Canada Research Chairs
Photonic Devices
光子器件
  • 批准号:
    CRC-2020-00295
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Canada Research Chairs
Nanostructured and Molecular Photonics
纳米结构和分子光子学
  • 批准号:
    1000231166-2015
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Canada Research Chairs
Molecular Photonics in the Strong Coupling Regime
强耦合状态下的分子光子学
  • 批准号:
    RGPIN-2020-06566
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Towards tunable and scalable black phosphorus photodetectors
迈向可调谐和可扩展的黑磷光电探测器
  • 批准号:
    506808-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Strategic Projects - Group
Nanostructured and Molecular Photonics
纳米结构和分子光子学
  • 批准号:
    1000231166-2015
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Canada Research Chairs
Towards Quantum Organic Optoelectronics
迈向量子有机光电子学
  • 批准号:
    RGPIN-2014-06129
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Passive microcavities for fast optical bistability
用于快速光学双稳态的无源微腔
  • 批准号:
    544136-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Engage Grants Program
Nanostructured and Molecular Photonics
纳米结构和分子光子学
  • 批准号:
    1000231166-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Canada Research Chairs

相似国自然基金

自组装DNA折纸模板指导贵金属图案化生长调控及其纳米光子学性质研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
平带转角二维材料超快光子学研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
有机杂化超高品质因子微腔非线性光子学研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
叠层二维狄拉克电子体系中的等离激元光子学
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于光子学的毫米波通信感知深度融合机理
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Molecular Photonics in the Strong Coupling Regime
强耦合状态下的分子光子学
  • 批准号:
    RGPIN-2020-06566
  • 财政年份:
    2022
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Study on potential energy surface for gas-phase vibrational strong coupling by IR spectroscopy and cavity-QED theory
红外光谱与腔QED理论研究气相振动强耦合势能面
  • 批准号:
    21H01879
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Establishment of strong light field photoscience in solids and application to materials science
固体强光场光科学的建立及其在材料科学中的应用
  • 批准号:
    21H05017
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Strong-field ultra-high resolution Fourier transform spectroscopy of molecules and molecular complexes
分子和分子复合物的强场超高分辨率傅里叶变换光谱
  • 批准号:
    20H00371
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Chemistry and Physics of Molecular Systems with Mathematically-Defined Strong Isotropic Lattice Structures
具有数学定义的强各向同性晶格结构的分子系统的化学和物理
  • 批准号:
    20H05621
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Grant-in-Aid for Specially Promoted Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了