Nanostructured carbon dioxide reduction electrocatalyst design and electrochemical device integration

纳米结构二氧化碳还原电催化剂设计与电化学装置集成

基本信息

  • 批准号:
    RGPIN-2019-05984
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Climate change is globally acknowledged as one of the biggest challenges of the 21st century. The Canadian Government has unequivocally committed to a low-carbon future through signing the 2016 Paris Climate Accord and implementing a federally mandated price on carbon emissions. However, policy changes are insufficient to accomplish the established goal of reducing carbon emissions by 30% over the next 12 years. Innovative new technologies are urgently needed to enable Canada's transition to a sustainable energy economy. The objective of this research program is to develop energy efficient and low-cost artificial photosynthesis prototypes that use renewable electricity (wind, solar, hydro) to electrochemically convert CO2 into valuable carbon-based chemicals. This technology will allow Canada's largest greenhouse gas emitters (i.e., the petrochemical industry) to reduce their emissions by directly converting them into valuable chemicals, including ethylene used to manufacture plastics, or ethanol for fuel. The timing of this research program is ideal as global markets begin the shift towards low-carbon products and processes. Furthermore, the cost of renewable electricity continues to drop to unprecedented levels, including wind and solar prices as low as $0.03 per kWh, and inexpensive hydro-power available in off-peak hours in certain parts of Canada. The key challenges hindering the development of artificial photosynthesis technologies are the lack of active and selective catalysts that can electrochemically convert CO2 molecules into fuels and chemicals, and the lack of device designs that can achieve practical efficiency and CO2 conversion rates. This research program directly addresses these challenges through the synthesis, characterization and performance evaluation of novel nanomaterial catalysts for electrochemical CO2 reduction. By establishing scientific design principles that guide catalyst activity and selectivity, improved catalyst nanomaterials will be designed and integrated into engineered artificial photosynthesis prototype devices for performance optimization and demonstration. This innovation in nanomaterial and device designs will generate cost-competitive technologies that will be commercialized by Canadian companies to capitalize on rapidly expanding clean energy markets, and to enable industry to decrease carbon emissions, reducing associated taxes and mitigating the devastating societal and environmental consequences of climate change. Furthermore, societal expectations are causing investors to consider sustainability when evaluating business decisions, and companies will be required to adopt clean energy technologies to meet these demands.
气候变化被全球公认为21世纪最大的挑战之一。加拿大政府签署 2016 年《巴黎气候协议》并实施联邦强制碳排放价格,明确致力于建设低碳未来。然而,政策变化不足以实现未来12年碳排放减少30%的既定目标。迫切需要创新的新技术来帮助加拿大向可持续能源经济转型。该研究计划的目标是开发节能且低成本的人工光合作用原型,利用可再生电力(风能、太阳能、水力)将二氧化碳电化学转化为有价值的碳基化学品。这项技术将使加拿大最大的温室气体排放国(即石化工业)能够通过直接将温室气体转化为有价值的化学品(包括用于制造塑料的乙烯或用于燃料的乙醇)来减少排放。随着全球市场开始转向低碳产品和工艺,该研究计划的时机非常理想。此外,可再生电力的成本继续下降至前所未有的水平,包括风能和太阳能价格低至每千瓦时0.03美元,以及加拿大某些地区在非高峰时段提供廉价的水力发电。阻碍人工光合作用技术发展的关键挑战是缺乏能够将二氧化碳分子电化学转化为燃料和化学品的活性和选择性催化剂,以及缺乏能够实现实际效率和二氧化碳转化率的装置设计。该研究项目通过用于电化学二氧化碳还原的新型纳米材料催化剂的合成、表征和性能评估来直接解决这些挑战。通过建立指导催化剂活性和选择性的科学设计原则,改进的催化剂纳米材料将被设计并集成到工程人工光合作用原型装置中,以进行性能优化和演示。纳米材料和设备设计方面的创新将产生具有成本竞争力的技术,这些技术将由加拿大公司商业化,以利用快速扩大的清洁能源市场,并使工业能够减少碳排放,减少相关税收并减轻破坏性的社会和环境后果气候变化。此外,社会期望促使投资者在评估业务决策时考虑可持续性,并且公司将被要求采用清洁能源技术来满足这些需求。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Higgins, Drew其他文献

Impact of palladium/palladium hydride conversion on electrochemical CO2 reduction via in-situ transmission electron microscopy and diffraction
通过原位透射电子显微镜和衍射研究钯/氢化钯转化对电化学 CO2 还原的影响
  • DOI:
    10.1038/s41467-024-45096-3
  • 发表时间:
    2024-01-31
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Abdellah, Ahmed M.;Ismail, Fatma;Siig, Oliver W.;Yang, Jie;Andrei, Carmen M.;DiCecco, Liza-Anastasia;Rakhsha, Amirhossein;Salem, Kholoud E.;Grandfield, Kathryn;Bassim, Nabil;Black, Robert;Kastlunger, Georg;Soleymani, Leyla;Higgins, Drew
  • 通讯作者:
    Higgins, Drew
Chemical Structure and Distribution in Nickel–Nitrogen–Carbon Catalysts for CO2 Electroreduction Identified by Scanning Transmission X-ray Microscopy
扫描透射 X 射线显微镜鉴定用于 CO2 电还原的镍-氮-碳催化剂的化学结构和分布
  • DOI:
    10.1021/acscatal.2c01255
  • 发表时间:
    2022-08-05
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Zhang, Chunyang;Shahcheraghi, Ladan;Ismail, Fatma;Eraky, Haytham;Yuan, Hao;Hitchcock, Adam P.;Higgins, Drew
  • 通讯作者:
    Higgins, Drew

Higgins, Drew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Higgins, Drew', 18)}}的其他基金

Nanostructured carbon dioxide reduction electrocatalyst design and electrochemical device integration
纳米结构二氧化碳还原电催化剂设计与电化学装置集成
  • 批准号:
    RGPIN-2019-05984
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Nanostructured carbon dioxide reduction electrocatalyst design and electrochemical device integration
纳米结构二氧化碳还原电催化剂设计与电化学装置集成
  • 批准号:
    RGPIN-2019-05984
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Development of new positive electrode materials for rechargeable zinc-ion intercalation batteries to overcome energy capacity and stability limitations
开发用于可充电锌离子嵌入电池的新型正极材料,以克服能量容量和稳定性限制
  • 批准号:
    556905-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Alliance Grants
Development of new positive electrode materials for rechargeable zinc-ion intercalation batteries to overcome energy capacity and stability limitations
开发用于可充电锌离子嵌入电池的新型正极材料,以克服能量容量和稳定性限制
  • 批准号:
    556905-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Alliance Grants
Nanostructured carbon dioxide reduction electrocatalyst design and electrochemical device integration
纳米结构二氧化碳还原电催化剂设计与电化学装置集成
  • 批准号:
    RGPIN-2019-05984
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Development of new positive electrode materials for rechargeable zinc-ion intercalation batteries to overcome energy capacity and stability limitations
开发用于可充电锌离子嵌入电池的新型正极材料,以克服能量容量和稳定性限制
  • 批准号:
    556905-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Alliance Grants
Development of graphene materials and their integration into supercapacitors for electric vehicle applications
石墨烯材料的开发及其与电动汽车超级电容器的集成
  • 批准号:
    556021-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Alliance Grants
Development of graphene materials and their integration into supercapacitors for electric vehicle applications
石墨烯材料的开发及其与电动汽车超级电容器的集成
  • 批准号:
    556021-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Alliance Grants
Nanostructured carbon dioxide reduction electrocatalyst design and electrochemical device integration
纳米结构二氧化碳还原电催化剂设计与电化学装置集成
  • 批准号:
    RGPIN-2019-05984
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Development of new positive electrode materials for rechargeable zinc-ion intercalation batteries to overcome energy capacity and stability limitations
开发用于可充电锌离子嵌入电池的新型正极材料,以克服能量容量和稳定性限制
  • 批准号:
    556905-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Alliance Grants

相似国自然基金

中空碳包覆铟金属化合物酸性介质中电催化二氧化碳还原研究
  • 批准号:
    22309037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向二氧化碳有机转化的光热、催化双功能木质素碳点的设计及其作用机制研究
  • 批准号:
    22378056
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
酸性膜电极电解器二氧化碳电催化还原制多碳产物研究
  • 批准号:
    22302204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二氧化碳加氢制低碳烯烃双功能核壳催化剂可控制备及其反应性能和机理研究
  • 批准号:
    22362025
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
面向二氧化碳还原制取多碳醇纳米多孔高熵合金的制备与表面结构调控
  • 批准号:
    52301208
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Nanostructured carbon dioxide reduction electrocatalyst design and electrochemical device integration
纳米结构二氧化碳还原电催化剂设计与电化学装置集成
  • 批准号:
    RGPIN-2019-05984
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Nanostructured carbon dioxide reduction electrocatalyst design and electrochemical device integration
纳米结构二氧化碳还原电催化剂设计与电化学装置集成
  • 批准号:
    RGPIN-2019-05984
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Nanostructured carbon dioxide reduction electrocatalyst design and electrochemical device integration
纳米结构二氧化碳还原电催化剂设计与电化学装置集成
  • 批准号:
    RGPIN-2019-05984
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Nanostructured carbon dioxide reduction electrocatalyst design and electrochemical device integration
纳米结构二氧化碳还原电催化剂设计与电化学装置集成
  • 批准号:
    RGPIN-2019-05984
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Nanostructured carbon dioxide reduction electrocatalyst design and electrochemical device integration
纳米结构二氧化碳还原电催化剂设计与电化学装置集成
  • 批准号:
    RGPIN-2019-05984
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了