Arrays of on-chip microcavities for quantum applications
用于量子应用的片上微腔阵列
基本信息
- 批准号:RGPIN-2020-04423
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the not-too-distant future, devices that exploit quantum mechanics will enable computing, communications, and sensing systems whose capabilities greatly exceed those of our current technologies. One promising vision is the creation of a quantum network, or 'quantum internet'. In such a network, light is used to transmit quantum state information over potentially large distances (typically using low-loss fiber optics), and atoms or solid-state materials are used (at network nodes) to process and store this quantum information. One particular challenge for quantum technology development is that the interaction between light and matter is inherently weak. Placing atoms or solid-state materials between two mirrors (a so-called optical cavity) strongly increases the efficiency of light-matter interactions, especially as the cavity is scaled to microscopic dimensions. Practical engineering solutions are needed for embedding nano-scale solid-state materials into micro-scale optical cavities, and for building systems that comprise large numbers of such cavities. Typically, these systems must also be integrated with electrical circuitry. A world-wide research effort towards this goal is ongoing, but it remains as a significant, unsolved technological challenge. The proposed work is an engineering development effort, and springs from our established and unique capability to fabricate arrays of high-quality, microscopic and `open-access' optical cavities on a single chip. These `open-access' cavities are essentially a pair of ultra-high-reflectance mirrors separated by an empty space, which creates the potential to confine light and arbitrary material objects within the same microscopic volume. The monolithic (single chip) nature of our process is unique compared to most of the alternative technologies that are under study. Furthermore, we have shown that these cavities have great potential for controlling and tailoring the emission of light for an embedded emitter, and that they are well-suited for coupling this light to and from an external fiber optic network. Building on this, we propose a long-term vision to implement chips combining arrays of micro-cavities, techniques for precisely locating light emitters and mechanical resonators within these cavities, and on-chip electrical wiring for tuning and controlling the emission and absorption of light and as an interface for microwave signals. This could lead to a practical and scalable implementation of critically needed quantum building blocks, such as controllable sources of single light particles (single photon emitters) and devices for converting quantum information between optical and microwave frequencies (quantum transducers). The work promises to place Canada at the forefront of widely sought technologies, and to enhance Canada's already strong standing in the field of quantum information sciences.
在不远的将来,利用量子力学的设备将使计算、通信和传感系统的能力大大超过我们当前技术的能力,一个有希望的愿景是创建量子网络或“量子互联网”。在这样的网络中,光用于远距离传输量子态信息(通常使用低损耗光纤),并使用原子或固态材料(在网络节点)来处理和存储该量子信息。量子技术发展的特殊挑战是光和物质本质上是弱的,将原子或固态材料放置在两个镜子(所谓的光学腔)之间可以大大提高光与物质相互作用的效率,特别是当腔缩小到微观尺寸时,需要实际的工程解决方案。用于将纳米级固态材料嵌入微米级光学腔,以及构建包含大量此类腔的系统。通常,这些系统还必须与电路集成,以实现这一目标。正在进行中,但仍然存在拟议的工作是一项工程开发工作,源于我们在单芯片上制造高质量、微观和“开放式”光学腔阵列的独特能力。 “-access”腔本质上是一对被空白空间隔开的超高反射率镜子,这创造了将光和任意物质物体限制在同一微观体积内的潜力。我们的工艺的整体(单芯片)性质。与大多数正在研究的替代技术相比,它是独一无二的。此外,我们已经表明,这些腔在控制和定制嵌入式发射器的光发射方面具有巨大的潜力,并且它们非常适合将这种光耦合到。在此基础上,我们提出了一个长期愿景,即实现结合微腔阵列的芯片、在这些腔内精确定位光发射器和机械谐振器的技术以及用于调谐的片上电线。和控制光的发射和吸收并作为微波信号的接口,这可能会导致急需的量子构建模块的实用且可扩展的实现,例如单光粒子的可控源(单光子发射器)和用于转换量子信息的设备。这项工作有望使加拿大处于广泛寻求的技术的前沿,并增强加拿大在量子信息科学领域本已强大的地位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DeCorby, Ray其他文献
DeCorby, Ray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DeCorby, Ray', 18)}}的其他基金
Arrays of on-chip microcavities for quantum applications
用于量子应用的片上微腔阵列
- 批准号:
RGPIN-2020-04423 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Arrays of on-chip microcavities for quantum applications
用于量子应用的片上微腔阵列
- 批准号:
RGPIN-2020-04423 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
An integrated platform for quantum networks
量子网络集成平台
- 批准号:
494024-2016 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Strategic Projects - Group
Hollow waveguides and micro-cavities for optofluidics
用于光流控的中空波导和微腔
- 批准号:
RGPIN-2015-04835 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Hollow waveguides and micro-cavities for optofluidics
用于光流控的中空波导和微腔
- 批准号:
RGPIN-2015-04835 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
An integrated platform for quantum networks
量子网络集成平台
- 批准号:
494024-2016 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Strategic Projects - Group
A wavelength interrogator for optical sensors
用于光学传感器的波长询问器
- 批准号:
500186-2016 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Idea to Innovation
Hollow waveguides and micro-cavities for optofluidics
用于光流控的中空波导和微腔
- 批准号:
RGPIN-2015-04835 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Hollow waveguides and micro-cavities for optofluidics
用于光流控的中空波导和微腔
- 批准号:
RGPIN-2015-04835 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Development of an interferometer for the detection of structured beams
开发用于检测结构光束的干涉仪
- 批准号:
474469-2014 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Engage Grants Program
相似国自然基金
基于微流控纳米微腔芯片的胃癌单外泌体miRNA/CRISPR检测新方法研究
- 批准号:62371293
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
微腔限域比率SERS芯片构建及其检测水产品中地西泮协同增效机制研究
- 批准号:32302213
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于热光稳定的Ta2O5微腔窄线宽布里渊激光器芯片的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
飞秒激光直写铌酸锂光量子集成芯片
- 批准号:11874375
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
芯片上金属纳米颗粒-光子晶体复合微腔的制备及应用研究
- 批准号:91850117
- 批准年份:2018
- 资助金额:80.0 万元
- 项目类别:重大研究计划
相似海外基金
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
患者由来kidney-on-a-chipを用いた慢性腎臓病の病態解明と創薬
使用源自患者的肾脏芯片阐明慢性肾脏疾病的病理学和药物发现
- 批准号:
24K03249 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
- 批准号:
10749672 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
- 批准号:
2332121 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Cooperative Agreement
A novel precision-engineered microfluidic chip for wear particle research
一种用于磨损颗粒研究的新型精密设计微流控芯片
- 批准号:
DP240102971 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Projects