Arrays of on-chip microcavities for quantum applications
用于量子应用的片上微腔阵列
基本信息
- 批准号:RGPIN-2020-04423
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the not-too-distant future, devices that exploit quantum mechanics will enable computing, communications, and sensing systems whose capabilities greatly exceed those of our current technologies. One promising vision is the creation of a quantum network, or 'quantum internet'. In such a network, light is used to transmit quantum state information over potentially large distances (typically using low-loss fiber optics), and atoms or solid-state materials are used (at network nodes) to process and store this quantum information. One particular challenge for quantum technology development is that the interaction between light and matter is inherently weak. Placing atoms or solid-state materials between two mirrors (a so-called optical cavity) strongly increases the efficiency of light-matter interactions, especially as the cavity is scaled to microscopic dimensions. Practical engineering solutions are needed for embedding nano-scale solid-state materials into micro-scale optical cavities, and for building systems that comprise large numbers of such cavities. Typically, these systems must also be integrated with electrical circuitry. A world-wide research effort towards this goal is ongoing, but it remains as a significant, unsolved technological challenge. The proposed work is an engineering development effort, and springs from our established and unique capability to fabricate arrays of high-quality, microscopic and `open-access' optical cavities on a single chip. These `open-access' cavities are essentially a pair of ultra-high-reflectance mirrors separated by an empty space, which creates the potential to confine light and arbitrary material objects within the same microscopic volume. The monolithic (single chip) nature of our process is unique compared to most of the alternative technologies that are under study. Furthermore, we have shown that these cavities have great potential for controlling and tailoring the emission of light for an embedded emitter, and that they are well-suited for coupling this light to and from an external fiber optic network. Building on this, we propose a long-term vision to implement chips combining arrays of micro-cavities, techniques for precisely locating light emitters and mechanical resonators within these cavities, and on-chip electrical wiring for tuning and controlling the emission and absorption of light and as an interface for microwave signals. This could lead to a practical and scalable implementation of critically needed quantum building blocks, such as controllable sources of single light particles (single photon emitters) and devices for converting quantum information between optical and microwave frequencies (quantum transducers). The work promises to place Canada at the forefront of widely sought technologies, and to enhance Canada's already strong standing in the field of quantum information sciences.
在不太遥不可及的未来,利用量子力学的设备将实现其功能大于我们当前技术的计算,通信和传感系统。一个承诺的愿景是创建量子网络或“量子互联网”。在这样的网络中,光用于在潜在的大距离(通常使用低损耗光纤)上传输量子状态信息,并使用原子或固态材料(在网络节点)来处理和存储此量子信息。量子技术开发的一个特别挑战是,光与物质之间的相互作用本质上是弱的。在两个镜子之间放置原子或固态材料(所谓的光腔)会大大提高光 - 物质相互作用的效率,尤其是随着腔缩放到显微镜尺寸时。需要实用的工程解决方案将纳米级固态材料嵌入微尺度光腔中,以及包括大量此类空腔的建筑系统。通常,这些系统还必须与电路集成。为了实现这一目标的全球研究工作正在进行中,但它仍然是一项重大,未解决的技术挑战。拟议的工作是一项工程开发工作,从我们建立的独特能力到制造高质量,显微镜和“开放式”光腔的阵列。这些“开放式”腔本质上是一对由空白空间隔开的超高反射镜,这可能会在同一微观体积内限制光线和任意材料对象的潜力。与正在研究的大多数替代技术相比,我们过程的整体化(单芯片)性质是唯一的。此外,我们已经证明,这些空腔具有控制和调整嵌入式发射极的光发射的巨大潜力,并且非常适合将此光耦合到外部光纤网络。在此基础上,我们提出了一个长期的愿景,以结合微型炉灶的阵列,精确定位光发射器的技术和这些空腔中的机械谐振器的技术,以及在芯片电线上进行调音和控制光的发射和遗憾以及光线的遗憾以及作为微波信号的接口。这可能导致实用且可扩展的量子构建块的实施,例如单光颗粒(单光子发射器)的受控来源和用于在光学和微波频率之间转换量子信息(量子传感器)之间的设备。这项工作有望将加拿大置于广泛的感官技术的最前沿,并增强加拿大在量子信息科学领域的坚强地位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DeCorby, Ray其他文献
DeCorby, Ray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DeCorby, Ray', 18)}}的其他基金
Arrays of on-chip microcavities for quantum applications
用于量子应用的片上微腔阵列
- 批准号:
RGPIN-2020-04423 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Arrays of on-chip microcavities for quantum applications
用于量子应用的片上微腔阵列
- 批准号:
RGPIN-2020-04423 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
An integrated platform for quantum networks
量子网络集成平台
- 批准号:
494024-2016 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Strategic Projects - Group
Hollow waveguides and micro-cavities for optofluidics
用于光流控的中空波导和微腔
- 批准号:
RGPIN-2015-04835 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Hollow waveguides and micro-cavities for optofluidics
用于光流控的中空波导和微腔
- 批准号:
RGPIN-2015-04835 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
An integrated platform for quantum networks
量子网络集成平台
- 批准号:
494024-2016 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Strategic Projects - Group
A wavelength interrogator for optical sensors
用于光学传感器的波长询问器
- 批准号:
500186-2016 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Idea to Innovation
Hollow waveguides and micro-cavities for optofluidics
用于光流控的中空波导和微腔
- 批准号:
RGPIN-2015-04835 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Hollow waveguides and micro-cavities for optofluidics
用于光流控的中空波导和微腔
- 批准号:
RGPIN-2015-04835 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Development of an interferometer for the detection of structured beams
开发用于检测结构光束的干涉仪
- 批准号:
474469-2014 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Engage Grants Program
相似国自然基金
基于微流控纳米微腔芯片的胃癌单外泌体miRNA/CRISPR检测新方法研究
- 批准号:62371293
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
微腔限域比率SERS芯片构建及其检测水产品中地西泮协同增效机制研究
- 批准号:32302213
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于热光稳定的Ta2O5微腔窄线宽布里渊激光器芯片的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于热光稳定的Ta2O5微腔窄线宽布里渊激光器芯片的研究
- 批准号:62205137
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
芯片上金属纳米颗粒-光子晶体复合微腔的制备及应用研究
- 批准号:91850117
- 批准年份:2018
- 资助金额:80.0 万元
- 项目类别:重大研究计划
相似海外基金
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
患者由来kidney-on-a-chipを用いた慢性腎臓病の病態解明と創薬
使用源自患者的肾脏芯片阐明慢性肾脏疾病的病理学和药物发现
- 批准号:
24K03249 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
- 批准号:
10749672 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
- 批准号:
2332121 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Cooperative Agreement
気道上皮バリアに着目した肺NTM症Lung-on-a-chipモデルの構築と応用
关注气道上皮屏障的肺NTM疾病芯片肺模型的构建与应用
- 批准号:
24K19096 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists