Learning Generative Models of 3D Shapes and Environments
学习 3D 形状和环境的生成模型
基本信息
- 批准号:RGPIN-2019-07098
- 负责人:
- 金额:$ 4.66万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the most intriguing and reoccurring questions in AI and computer science is when a machine can be considered to possess human-level intelligence. In its best-known version, the Turing Test judges the humanness of a machine by its ability to make natural language conversations. In 2014, a chatbot named Eugene was considered by many to have passed the test. So is Turing Test the best choice? Is it too easy? In the lesser-known "Lovelace Test", named after Lady Ada Lovelace, machines are judged by their creativity or originality. Lovelace pre-dated Turing by about 100 years and is often credited as the world's first computer programmer. In 1843, she remarked that computers cannot be thought to possess human intelligence until they can generate something original, which they were not programmed to do. Can a machine truly become creative? That is the ultimate question and the long-term pursuit would be to close the gap between machines and humans in creativity. In the shorter term, and as a computer graphics researcher, I want to tackle a more tangible problem first: to train machines to learn and execute generative models of 3D shapes and environments, where the outcomes do not have to be creative. While classical graphics mainly focuses on realistic image synthesis from explicit scene descriptions, in the new era of graphics, we wish to synthesize all forms of visual contents, where the inputs can be abstract (e.g., texts) or consist of only a set of exemplars. My current research objective is to advance data-driven visual content creation and geometric deep learning, making "big 3D data" a reality and fulfilling my four V's for data generation. Namely, the generated data should be in large volume and with cross-category variety, intra-category variation, and novelty - and ultimately, originality, to pass the Lovelace Test. In the next five years, I will advance the state of the art in developing and training generative models for 3D shapes and environments, enriching visual contents and design prototypes to serve applications in AR/VR, robotics, education, health, smart homes, and design and manufacturing. As well, I will keep pushing the boundary of computational creativity.
在AI和计算机科学中,最引人入胜,最重复的问题之一是可以认为机器具有人类水平的智能。图灵测试在其最著名的版本中,通过进行自然语言对话的能力来判断机器的人性。 2014年,许多人认为一个名叫Eugene的聊天机器人通过了测试。那么图灵测试是最佳选择吗?太容易了吗?在鲜为人知的“ Lovelace测试”中,以Ada Lovelace夫人的名字命名,机器的创造力或独创性来判断。 Lovelace先前的Turing大约100年,通常被认为是世界上第一位计算机程序员。在1843年,她指出,直到能够生成原始的东西,这些计算机才能拥有人类的智能,而这些智力是没有编程的。一台机器能真正发挥创造力吗?这是最终的问题,长期的追求是缩小机器和人类在创造力中的差距。在较短的任期中,作为计算机图形研究人员,我想首先解决一个更明显的问题:培训机器以学习和执行3D形状和环境的通用模型,而结果不必具有创造力。尽管经典图形主要集中于明确的场景描述中的现实图像综合,但在新的图形时代,我们希望综合所有形式的视觉内容,其中输入可以抽象为抽象(例如,文本)或仅由一组示例组成。我目前的研究目标是推进数据驱动的视觉内容创建和几何深度学习,使“大3D数据”成为现实,并实现我的四个V供数据生成。也就是说,生成的数据应大量且具有跨类别的多样性,类别内的变化以及新颖性 - 以及最终的创意,以通过Lovelace测试。在接下来的五年中,我将在为3D形状和环境的开发和培训通用模型中提高最新技术,并丰富视觉内容和设计原型,以在AR/VR,机器人技术,教育,健康,智能家庭以及设计和制造和制造业中为应用程序提供应用。同样,我将继续推动计算创造力的边界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhang, Hao其他文献
Versatile Types of DNA-Based Nanobiosensors for Specific Detection of Cancer Biomarker FEN1 in Living Cells and Cell-Free Systems
- DOI:
10.1021/acs.nanolett.8b03724 - 发表时间:
2018-11-01 - 期刊:
- 影响因子:10.8
- 作者:
Zhang, Hao;Ba, Sai;Li, Tianhu - 通讯作者:
Li, Tianhu
Development and validation of prognostic nomograms in patients with adrenocortical carcinoma: a population-based study
- DOI:
10.1007/s11255-020-02413-1 - 发表时间:
2020-02-18 - 期刊:
- 影响因子:2
- 作者:
Zhang, Hao;Naji, Yaser;Dai, Yingbo - 通讯作者:
Dai, Yingbo
A case report of Erdheim-Chester disease-clinically characterized by recurrent fever, multiple bone destruction, and antinuclear antibodies.
- DOI:
10.1016/j.heliyon.2023.e18867 - 发表时间:
2023-08 - 期刊:
- 影响因子:4
- 作者:
Gao, Zhong-en;Li, Jing-jing;Sheng, Kang;Liu, Rui;Fan, Feng;Zhou, La-mei;Zhang, Hao;Hao, Dong-lin - 通讯作者:
Hao, Dong-lin
The 100 most cited papers on total anomalous pulmonary venous connection: a bibliometric analysis.
- DOI:
10.1186/s13019-023-02284-4 - 发表时间:
2023-05-25 - 期刊:
- 影响因子:1.6
- 作者:
Wen, Chen;Liu, Wei;Fang, Chenhao;Shentu, Jin;Ma, Ruixiang;Zhang, Han;Zhang, Hao;Zhu, Zhongqun;Chen, Huiwen - 通讯作者:
Chen, Huiwen
Noninvasive prediction of node-positive breast cancer response to presurgical neoadjuvant chemotherapy therapy based on machine learning of axillary lymph node ultrasound.
- DOI:
10.1186/s12967-023-04201-8 - 发表时间:
2023-05-21 - 期刊:
- 影响因子:7.4
- 作者:
Zhang, Hao;Cao, Wen;Liu, Lianjuan;Meng, Zifan;Sun, Ningning;Meng, Yuanyuan;Fei, Jie - 通讯作者:
Fei, Jie
Zhang, Hao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhang, Hao', 18)}}的其他基金
Understanding Hydrogen Embrittlement in Steels from Atomistic Perspective
从原子角度理解钢中的氢脆
- 批准号:
RGPIN-2022-03661 - 财政年份:2022
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Learning Generative Models of 3D Shapes and Environments
学习 3D 形状和环境的生成模型
- 批准号:
RGPIN-2019-07098 - 财政年份:2022
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
The Role of Cooperative Atomic Motion in the Plastic Deformation of Metallic Glasses
原子协同运动在金属玻璃塑性变形中的作用
- 批准号:
RGPIN-2017-03814 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
New Algorithms and Analyses for Partially Observable Markov Decision Processes
部分可观察马尔可夫决策过程的新算法和分析
- 批准号:
RGPIN-2014-04979 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
The Role of Cooperative Atomic Motion in the Plastic Deformation of Metallic Glasses
原子协同运动在金属玻璃塑性变形中的作用
- 批准号:
RGPIN-2017-03814 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Learning Generative Models of 3D Shapes and Environments
学习 3D 形状和环境的生成模型
- 批准号:
RGPIN-2019-07098 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
New Algorithms and Analyses for Partially Observable Markov Decision Processes
部分可观察马尔可夫决策过程的新算法和分析
- 批准号:
RGPIN-2014-04979 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
The Role of Cooperative Atomic Motion in the Plastic Deformation of Metallic Glasses
原子协同运动在金属玻璃塑性变形中的作用
- 批准号:
RGPIN-2017-03814 - 财政年份:2019
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Learning Generative Models of 3D Shapes and Environments
学习 3D 形状和环境的生成模型
- 批准号:
RGPIN-2019-07098 - 财政年份:2019
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
The Role of Cooperative Atomic Motion in the Plastic Deformation of Metallic Glasses
原子协同运动在金属玻璃塑性变形中的作用
- 批准号:
507975-2017 - 财政年份:2019
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
UBR1通过泛素化修饰PTEN调控PI3K/AKT/mTOR促进甲状腺相关眼病血管生成的研究
- 批准号:82360213
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
NH3-SCR反应过程中高毒性HCN生成与净化研究
- 批准号:22306191
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
结合诱导纤维生成肽长效抑制角膜新生血管形成治疗角膜病的机制
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
结构化文本引导的三维人体动作生成方法研究
- 批准号:62306031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于铝卟啉体系催化聚合二氧化碳和微藻油生成可降解聚碳酸酯的机理研究
- 批准号:32301721
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Proteasomal recruiters of PAX3-FOXO1 Designed via Sequence-Based Generative Models
通过基于序列的生成模型设计的 PAX3-FOXO1 蛋白酶体招募剂
- 批准号:
10826068 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别:
Neural Operator Learning to Predict Aneurysmal Growth and Outcomes
神经算子学习预测动脉瘤的生长和结果
- 批准号:
10636358 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别:
Virtual nanostructure simulation (VINAS) portal
虚拟纳米结构模拟 (VINAS) 门户
- 批准号:
10567076 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别:
CAREER: Generative Item, Response, and Feedback Models in Assessment and Learning
职业:评估和学习中的生成项目、响应和反馈模型
- 批准号:
2237676 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别:
Standard Grant
Real time relapse risk scoring for Opioid Use Disorder (OUD) from clinical trial datasets
根据临床试验数据集对阿片类药物使用障碍 (OUD) 进行实时复发风险评分
- 批准号:
10585452 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别: